DeepHyperX 使用教程

DeepHyperX 使用教程

DeepHyperX Deep learning toolbox based on PyTorch for hyperspectral data classification. DeepHyperX 项目地址: https://gitcode.com/gh_mirrors/de/DeepHyperX

1. 项目目录结构及介绍

DeepHyperX 是一个基于 PyTorch 的用于高光谱数据分类的深度学习工具箱。项目目录结构如下:

DeepHyperX/
├── .github/
│   └── ISSUE_TEMPLATE
├── .vscode/
│   └── ...
├── Dockerfile
├── License
├── README.md
├── custom_datasets.py
├── datasets.py
├── inference.py
├── main.py
├── models.py
├── requirements.txt
├── start.sh
└── utils.py
  • .github/: 存放 GitHub 使用的模板文件。
  • .vscode/: 存放 Visual Studio Code 项目的配置文件。
  • Dockerfile: 用于构建 Docker 容器的配置文件。
  • License: 项目的许可协议文件。
  • README.md: 项目的说明文档。
  • custom_datasets.py: 用于添加自定义数据集的 Python 文件。
  • datasets.py: 用于处理和加载不同数据集的 Python 文件。
  • inference.py: 用于模型推理的 Python 文件。
  • main.py: 项目的启动文件,用于运行实验和训练模型。
  • models.py: 定义了各种深度学习模型的 Python 文件。
  • requirements.txt: 项目依赖的 Python 包列表。
  • start.sh: 用于启动 Visdom 服务的 shell 脚本。
  • utils.py: 存放项目通用的工具函数。

2. 项目的启动文件介绍

项目的启动文件是 main.py,它是运行实验和训练模型的入口。以下是一些基本的命令行参数示例:

python main.py --model SVM --dataset IndianPines --training_sample 0.3

这条命令将在 Indian Pines 数据集上运行 SVM 模型,并使用 30% 的样本进行训练。

main.py 文件支持多个参数,以下是一些常用的参数:

  • --model: 指定要使用的模型类型(例如:svm, nn, hamida 等)。
  • --dataset: 指定要使用的数据集(例如:PaviaC, PaviaU, IndianPines 等)。
  • --training_sample: 指定训练样本的比例。
  • --cuda: 如果可用,将使用 GPU 进行训练。

3. 项目的配置文件介绍

项目的配置文件主要是 requirements.txt,它列出了项目依赖的 Python 包。要安装这些依赖项,可以在项目根目录下运行以下命令:

pip install -r requirements.txt

对于 Windows 用户,可能需要添加 -f https://download.pytorch.org/whl/torch_stable.html 以正确安装 PyTorch。

此外,custom_datasets.py 也可以被视为一个配置文件,它允许用户添加和配置自定义数据集。开发者需要在该文件中添加一个新的数据集条目,并为其定义一个特定的数据加载器。

DeepHyperX Deep learning toolbox based on PyTorch for hyperspectral data classification. DeepHyperX 项目地址: https://gitcode.com/gh_mirrors/de/DeepHyperX

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孔秋宗Mora

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值