DeepHyperX 使用教程
1. 项目目录结构及介绍
DeepHyperX 是一个基于 PyTorch 的用于高光谱数据分类的深度学习工具箱。项目目录结构如下:
DeepHyperX/
├── .github/
│ └── ISSUE_TEMPLATE
├── .vscode/
│ └── ...
├── Dockerfile
├── License
├── README.md
├── custom_datasets.py
├── datasets.py
├── inference.py
├── main.py
├── models.py
├── requirements.txt
├── start.sh
└── utils.py
.github/
: 存放 GitHub 使用的模板文件。.vscode/
: 存放 Visual Studio Code 项目的配置文件。Dockerfile
: 用于构建 Docker 容器的配置文件。License
: 项目的许可协议文件。README.md
: 项目的说明文档。custom_datasets.py
: 用于添加自定义数据集的 Python 文件。datasets.py
: 用于处理和加载不同数据集的 Python 文件。inference.py
: 用于模型推理的 Python 文件。main.py
: 项目的启动文件,用于运行实验和训练模型。models.py
: 定义了各种深度学习模型的 Python 文件。requirements.txt
: 项目依赖的 Python 包列表。start.sh
: 用于启动 Visdom 服务的 shell 脚本。utils.py
: 存放项目通用的工具函数。
2. 项目的启动文件介绍
项目的启动文件是 main.py
,它是运行实验和训练模型的入口。以下是一些基本的命令行参数示例:
python main.py --model SVM --dataset IndianPines --training_sample 0.3
这条命令将在 Indian Pines 数据集上运行 SVM 模型,并使用 30% 的样本进行训练。
main.py
文件支持多个参数,以下是一些常用的参数:
--model
: 指定要使用的模型类型(例如:svm
,nn
,hamida
等)。--dataset
: 指定要使用的数据集(例如:PaviaC
,PaviaU
,IndianPines
等)。--training_sample
: 指定训练样本的比例。--cuda
: 如果可用,将使用 GPU 进行训练。
3. 项目的配置文件介绍
项目的配置文件主要是 requirements.txt
,它列出了项目依赖的 Python 包。要安装这些依赖项,可以在项目根目录下运行以下命令:
pip install -r requirements.txt
对于 Windows 用户,可能需要添加 -f https://download.pytorch.org/whl/torch_stable.html
以正确安装 PyTorch。
此外,custom_datasets.py
也可以被视为一个配置文件,它允许用户添加和配置自定义数据集。开发者需要在该文件中添加一个新的数据集条目,并为其定义一个特定的数据加载器。