Smart Money Concepts 开源项目教程
1. 项目介绍
Smart Money Concepts 是一个专为算法交易设计的 Python 包,它将 Inner Circle Trader (ICT) 的智能资金概念引入 Python,提供了一系列用于交易策略的指标。该项目旨在帮助交易者和投资者洞察市场情绪、趋势和潜在的反转点。
主要功能
- Fair Value Gap (FVG): 识别公平价值缺口。
- Swing Highs and Lows: 识别摆动高点和低点。
- Break of Structure (BOS) & Change of Character (CHoCH): 识别市场结构的改变。
- Order Blocks (OB): 检测订单块。
- Liquidity: 识别流动性区域。
- Previous High And Low: 获取指定时间框架的前高点和低点。
- Sessions: 识别特定交易时段。
- Retracements: 计算回撤百分比。
2. 项目快速启动
安装
pip install smartmoneyconcepts
使用示例
from smartmoneyconcepts import smc
import pandas as pd
# 准备数据
data = {
"open": [100, 101, 102, 103, 104],
"high": [105, 106, 107, 108, 109],
"low": [95, 96, 97, 98, 99],
"close": [101, 102, 103, 104, 105],
"volume": [1000, 1100, 1200, 1300, 1400]
}
ohlc = pd.DataFrame(data)
# 计算 Fair Value Gap
fvg_result = smc.fvg(ohlc, join_consecutive=False)
print(fvg_result)
# 计算 Swing Highs and Lows
swing_result = smc.swing_highs_lows(ohlc, swing_length=50)
print(swing_result)
3. 应用案例和最佳实践
案例1:使用 Fair Value Gap 进行交易决策
# 计算 Fair Value Gap
fvg_result = smc.fvg(ohlc, join_consecutive=False)
# 根据 FVG 结果进行交易决策
if fvg_result['FVG'] == 1:
print("买入信号")
elif fvg_result['FVG'] == -1:
print("卖出信号")
案例2:结合 Swing Highs and Lows 进行趋势分析
# 计算 Swing Highs and Lows
swing_result = smc.swing_highs_lows(ohlc, swing_length=50)
# 根据 Swing Highs and Lows 结果进行趋势分析
if swing_result['HighLow'] == 1:
print("上升趋势")
elif swing_result['HighLow'] == -1:
print("下降趋势")
4. 典型生态项目
1. Pandas
- 介绍: Pandas 是一个强大的数据处理库,常用于数据分析和数据操作。
- 结合使用: Smart Money Concepts 依赖于 Pandas 进行数据处理和分析。
2. NumPy
- 介绍: NumPy 是一个用于科学计算的基础库,提供了多维数组对象和各种数学函数。
- 结合使用: Smart Money Concepts 在内部使用 NumPy 进行高效的数值计算。
3. Matplotlib
- 介绍: Matplotlib 是一个用于绘制图表和可视化数据的库。
- 结合使用: 用户可以使用 Matplotlib 将 Smart Money Concepts 的计算结果可视化,以便更好地理解市场行为。
通过以上模块的介绍和示例,您可以快速上手并深入了解 Smart Money Concepts 项目。希望本教程能帮助您在算法交易中取得更好的成果!
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考