PEFT - 高效微调大模型的首选工具

🤗 PEFT - 高效微调大模型的首选工具

peft🤗 PEFT: State-of-the-art Parameter-Efficient Fine-Tuning.项目地址:https://gitcode.com/gh_mirrors/pe/peft

项目简介

在大规模预训练模型领域中,全参数微调往往由于其庞大的计算和存储成本而变得不切实际。Parameter-Efficient Fine-Tuning(简称PEFT)应运而生,它通过仅对少量额外参数进行微调来适应下游任务,从而显著降低了资源需求。这种方法不仅节约了算力和空间,还使得最新PEFT技术达到接近全量参数微调的效果。

该项目由HuggingFace团队开发维护,旨在提供一系列高效且易于使用的参数高效微调方法。通过紧密集成Transformers库以及Diffusers等其他框架,PEFT支持广泛的模型训练与推理场景,并利用Accelerate实现了分布式处理能力。这极大地提升了模型的可访问性与灵活性,让即使是普通硬件配置下的用户也能享受到大型语言模型的魅力。

技术解析

LoRA与其他PEFT方法

LoRA是PEFT框架中的明星技术之一,采用低秩分解的方式,在不修改主干网络权重的基础上加入特定于任务的小型层,实现轻量化微调。这意味着只有新增加的少量参数会得到更新,原模型大部分权重保持不变,大幅节省了训练时的内存占用和最终模型文件大小。此外,PEFT还包括Adapter、Soft Prompts和IA3等多种策略以满足不同场景的需求。

集成与扩展

PEFT不仅限于单机训练,其与HuggingFace Accelerate的深度集成意味着可以无缝迁移到多GPU、TPU或其它并行计算架构上,为大型模型提供了高效的分布式解决方案。对于特别大的模型,还能结合CPU卸载等功能进一步降低显存需求。

应用场景与案例

消费级硬件上的高性能

即使是在消费级硬件条件下,如配备A100 80GB GPU的工作站,通过LoRA等PEFT技术应用在像bigscience/T0_3B这样的3亿参数级别模型上,其训练过程的显存消耗从近50GB降至不到15GB。更令人惊喜的是,经过PEFT微调后的模型性能与完全微调版本相当,甚至在某些情况下更优秀。

储存节省与资源共享

每项PEFT适配器所占存储空间通常仅为几兆字节,相较于数十GB的完整模型文件来说大大缩减了体积,尤其适用于拥有多个数据集的用户。不仅减少了存储压力,也避免了对基础模型重复训练带来的“灾难性遗忘”问题,确保了泛化能力和适应新任务的能力。

特点综述

  • 高效资源管理:通过只调整一小部分参数,极大减轻了计算设备的压力。
  • 兼容性强:与Transformers、Diffusers等多个流行框架深度整合,简化了模型部署流程。
  • 易于上手:通过详尽的文档引导与示例代码,即便是新手也可以快速掌握PEFT使用技巧。
  • 社区活跃:定期更新的技术指南与分享会帮助用户深入了解最新研究成果及其实践价值。

总之,无论你是AI领域的研究者还是开发者,亦或是任何希望借助先进自然语言处理技术提升产品功能的企业,PEFT都是值得尝试的强大助力。它不仅能够帮助你在有限的资源下运行更大规模的模型,更能促进模型的创新迭代,推动整个行业的发展进步。快来体验PEFT的魅力吧,让我们共同探索高效微调带来的无限可能!


快速入门

安装PEFT:

pip install peft

准备模型用于训练:

from transformers import AutoModelForSeq2SeqLM
from peft import get_peft_config, get_peft_model, LoraConfig, TaskType

model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/mt0-large")
config = LoraConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1)
peft_model = get_peft_model(model, config)

加载PEFT模型用于推断:

from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
model = AutoPeftModelForCausalLM.from_pretrained("ybelkada/opt-350m-lora")
model.to("cuda")

以上只是简略示范,更多高级特性与应用场景,请参考官方文档及案例教程。


我们相信,随着PEFT的应用日益广泛,将有越来越多的人感受到其带来的便利与效率。不论是为了节省成本,加速模型训练过程,还是为了优化现有系统的性能表现,PEFT都将是您不可或缺的好伙伴。立即行动起来,开启您的PEFT之旅吧!

peft🤗 PEFT: State-of-the-art Parameter-Efficient Fine-Tuning.项目地址:https://gitcode.com/gh_mirrors/pe/peft

  • 18
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
在实战操作中,PEFT库可以用来微调BERT模型,以进行文本情感分类任务。首先,我们需要准备一个包含大量文本和标签的数据集,用于训练和验证BERT模型。然后,我们需要利用PEFT库中提供的工具和接口,将数据集转换成BERT模型可接受的格式,并进行数据预处理,如分词和填充等操作。 接着,我们可以利用PEFT库中提供的预训练模型,加载BERT模型的参数和网络结构,并在数据集上进行微调微调的过程中,我们可以通过调整学习率、批大小和训练轮数等超参数,来优化模型的性能。在每个训练轮数结束后,我们可以利用PEFT库中的评估工具模型进行评估,以了解模型在验证集上的性能表现。 最后,当模型在验证集上的性能达到满意的水平后,我们可以使用PEFT库提供的保存模型工具,将微调后的BERT模型保存下来,以备在实际应用中使用。通过PEFT库的实战操作,我们可以有效地利用BERT模型进行文本情感分类任务,提高模型的准确性和泛化能力,从而更好地满足实际应用的需求。 PEFT库的实战操作不仅帮助我们更好地理解和使用BERT模型,也为我们提供了一套完整的工具和流程,使得模型训练和应用变得更加简单和高效。 PEFT库实战(一): lora微调BERT(文本情感分类) 的操作流程清晰,易于上手,为我们在文本情感分类任务中的应用提供了有力的支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

缪阔孝Ruler

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值