- 博客(27)
- 收藏
- 关注
原创 【大模型】微调实战—使用 ORPO 微调 Llama 3
ORPO 是一种新颖微调(fine-tuning)技术,它将传统的监督微调(supervised fine-tuning)和偏好对齐(preference alignment)阶段合并为一个过程。这减少了训练所需的计算资源和时间。此外,实证结果表明,ORPO 在各种模型规模和基准测试(benchmarks)上优于其他对齐方法。在本文中,我们将使用 ORPO 和 TRL 库对新的 Llama 3 8B 模型进行微调。
2024-07-08 21:43:35 1268
原创 【大模型】大模型相关技术研究—微调
Prefix Tuning的灵感来源是,基于Prompt Engineering的实践表明,在不改变大模型的前提下,在Prompt上下文中添加适当的条件,可以引导大模型有更加出色的表现。大模型中有其中一部分参数,是非常重要的,是影响大模型生成结果的关键参数,这部分关键参数就是上面提到的低维的本质模型。QLoRA就是量化版的LoRA,它是在LoRA的基础上,进行了进一步的量化,将原本用16bit表示的参数,降为用4bit来表示,可以在保证模型效果的同时,极大地降低成本。而用了QLoRA之后,只需要48GB。
2024-07-08 21:38:23 688
原创 【大模型】大模型相关技术研究,资料整理
大模型推理性能优化的一个常用技术是KV Cache,该技术可以在不影响任何计算精度的前提下,通过空间换时间思想,提高推理性能。生成式generative模型的推理过程很有特点,我们给一个输入文本,模型会输出一个回答(长度为N),其实该过程中执行了N次推理过程。即GPT类模型一次推理只输出一个token,输出token会与输入tokens 拼接在一起,然后作为下一次推理的输入,这样不断反复直到遇到终止符。其实,KV Cache 配置开启后,推理过程可以分为2个阶段:1、预填充阶段:发生在计算第一个输出t
2024-07-06 17:07:04 1187
原创 【大模型】什么是大模型框架?常用的大模型框架盘点对比
大模型框架是指用于训练、推理和部署大型语言模型(LLMs)的软件工具和库。这些框架通常提供了高效的计算资源管理、分布式训练、模型优化和推理加速等功能,以便更好地利用硬件资源(如GPU和TPU)来处理庞大的数据集和复杂的模型结构。大模型框架的优点高效性:通过优化计算和内存管理,这些框架能够显著提高训练和推理的速度。可扩展性:支持分布式训练,可以在多个GPU或TPU上运行,适用于大规模数据集和复杂任务。灵活性:提供丰富的API和工具,使得研究人员和工程师可以方便地进行定制化开发。
2024-07-06 16:50:40 4027
原创 【大模型搭建】部署Ollama,pull失败,手动构建方案
Ollama 是一个专注于简化大规模机器学习模型开发的框架。它提供了一系列工具来帮助开发者轻松地定义、训练和部署大型语言模型。优点:• 提供了简洁的API,易于上手。• 支持多种硬件加速选项,如GPU和TPU。• 内置了许多预训练模型,方便快速开始实验。缺点:• 对一些高级功能支持有限,需要手动实现。• 高并发性能受限,更新中。
2024-07-05 22:30:43 2817
原创 【频谱管理】保存无线电频率划分规定到excel/数据库
把非结构化数据变为结构化数据,无线电频率划分规定下载链接任务是把word文档转存在数据库中方便管理。工具:python+docx+pandas需要处理一下原始数据:因为khz/Mhz/Ghz都在一起了处理后的目录:代码和处理后的文件放在我的github仓库list_ = [] # 初始化一个空列表,用来装后面的数据字典# 处理khzfor table in docx.tables: # 循环所有的表格row_counter = 0 # 初始化行计数器。
2024-04-18 18:54:14 424 1
原创 【频谱图】vue3+colormap+canvas实现瀑布图/频谱图/语谱图/时频图
效果展示:可以自己设置输入格式(这里使用128 * 128)找了几个没找到合适的vue实现频谱图,这个太麻烦地址;wavesurfer.js这个是针对音频的,需要改进,也不交麻烦本文借助chatgpt+这篇文章颜色思路地址直接使用vue3。vue代码如下<template> <canvas ref="canvas" :width="canvasWidth" :height="canvasHeight"></canvas></template>
2024-04-09 18:03:12 1203 1
原创 【热图生成】关键点检测/信号定位,heatmap生成
heatmap_smooth = gaussian_filter(heatmap, sigma=1)决定整体热力大小。效果展示:heatmap[y, x] = random.random()决定每个点概率。代码参考chatgpt生成。
2024-03-17 14:57:11 621 1
原创 【频谱监测】IQ文件大小计算,常见频段分析,5G/对讲机/广播
我们考虑最大监测情况,全天24小时监测,又HackRF One采样率最大为20 Msps,常用2 Msps采样率进行频谱监测。软件无线电采样一次为一组IQ样本,IQ分别为numpy.complex64格式,它占据 8 个字节,一次采样为16字节7天数据:724小时2Msps16字节-724小时20Msps16字节=9.2TB-92TB。
2024-03-08 11:29:57 656 1
原创 人工智能写论文工具-公式+绘图+配色
模块在线绘图工具效果展示:在线latex公式工具:公式识别:公式编辑:效果展示:折线对比绘画工具:效果展示:解决适配中文字体问题:
2023-12-20 18:07:52 668 1
原创 【频谱感知】生成数据集,使用DeepSig RadioML 2018.01A
很久之前做的这部分工作了,应该是去年把调制识别、频谱感知、频谱知识图谱等都做了一遍,现在主要工作是频谱异常检测和异常信号定位,看有人要代码就整理了一下。记得下面代码是改编github上面的,github那个代码是rml2016数据集的且有问题,时间太长找不到原地址了。再除了图中前三个标注的功率范围,其他调制信号功率都是1000左右(1024个点,接近1024)排除17,18调制方式是因为对此种调制方式不太了解,变化太诡异,功率从一千涨到十万,反推出noise_pow,利用noise_pow生成复高斯噪声。
2023-11-29 15:07:43 1821 2
原创 获取股票列表,获取股票五日数据,新浪财经实时数据接口和历史数据接口
初次接触量化的一些代码和资源,记录以自用!参考公式:(实时数据+前四天收盘价)/5。获取全部股票代码和名字(获取股票五日数据:(
2023-08-16 16:13:49 4678 2
原创 10、信道编码【入门软件无线电(SDR)】PySDR:使用 Python 的 SDR 和 DSP 指南
在这一章中,我们将介绍信道编码的基础知识。前向纠错(FEC)、香农极限、汉明码、Turbo码和LDPC码。信道编码是无线通信中的一个巨大领域,并且是“信息论”的一个分支,“信息论”是对信息的量化、存储和通信的研究。
2023-05-16 11:51:38 467
原创 【频谱感知】数据集分析,纯噪声IQ数据生成
个人没具体对应分析,也没有统计分析,只是给出粗略实现方式,生成噪声代码如下,最后的数据和deepsig2018数据格式类似,X=[4096,1024,2] Y[4096,1] (和deepsig2018不一样【4096,24】,理论应该整合起来,全部修改为【4096,2】,当然我认为可以同时实现调制识别和频谱感知,那么应该修改为【4096,25】),Z【4096,1】,重说一遍,各噪声功率的比值没进行统计分析,仅主观设置,本文仅提供思路,mul=3,基本在0-1(符合0db情况,后面不在赘述)
2023-05-06 10:35:42 1627 7
原创 9、链接预算 【入门软件无线电(SDR)】PySDR:使用 Python 的 SDR 和 DSP 指南
链接预算 【入门软件无线电(SDR)】PySDR:使用 Python 的 SDR 和 DSP 指南
2023-04-17 08:52:15 612
原创 8、滤波器 【入门软件无线电(SDR)】PySDR:使用 Python 的 SDR 和 DSP 指南
滤波器 【入门软件无线电(SDR)】PySDR:使用 Python 的 SDR 和 DSP 指南
2023-04-08 20:39:28 1134
原创 7、噪声和分贝【入门软件无线电(SDR)】PySDR:使用 Python 的 SDR 和 DSP 指南
在本章中,我们将讨论噪声,包括如何在无线通信系统中对噪声进行建模和处理。概念包括AWGN、复数噪声和SNR/SINR。我们还将在此过程中介绍分贝(dB),因为它在无线通信和SDR中广泛存在。
2023-04-05 09:52:38 532
原创 【AMR自动调制识别数据预处理】DeepSig RadioML 2018.01A 处理为单信噪比单调制数据
DeepSig RadioML 2018.01A 处理为单信噪比单调制数据,及数据集分析
2023-03-21 15:25:20 1491 2
原创 6、USRP【入门软件无线电(SDR)】PySDR:使用 Python 的 SDR 和 DSP 指南
4、USRP【入门软件无线电(SDR)】PySDR:使用 Python 的 SDR 和 DSP 指南
2023-03-13 10:38:02 2299
原创 5、PlutoSDR【入门软件无线电(SDR)】PySDR:使用 Python 的 SDR 和 DSP 指南
PlutoSDR【入门软件无线电(SDR)】PySDR:使用 Python 的 SDR 和 DSP 指南
2023-03-13 10:00:15 3906
原创 11、IQ 文件和 SigMF【入门软件无线电(SDR)】PySDR:使用 Python 的 SDR 和 DSP 指南
IQ 文件和 SigMF【入门软件无线电(SDR)】PySDR:使用 Python 的 SDR 和 DSP 指南
2023-03-04 19:54:10 1086
原创 4、数字调制【入门软件无线电(SDR)】PySDR:使用 Python 的 SDR 和 DSP 指南
数字调制【入门软件无线电(SDR)】PySDR:使用 Python 的 SDR 和 DSP 指南
2023-03-03 21:01:39 1085
原创 3、IQ采样【入门软件无线电(SDR)】PySDR:使用 Python 的 SDR 和 DSP 指南
IQ采样【入门软件无线电(SDR)】PySDR:使用 Python 的 SDR 和 DSP 指南
2023-03-03 19:24:04 3068
原创 2、频域【入门软件无线电(SDR)】PySDR:使用 Python 的 SDR 和 DSP 指南
2、频域【入门软件无线电(SDR)】PySDR:使用 Python 的 SDR 和 DSP 指南
2023-03-03 14:56:42 1324
原创 1、简介【入门软件无线电(SDR)】PySDR:使用 Python 的 SDR 和 DSP 指南
PySDR:使用 Python 的 SDR 和 DSP 指南
2023-03-03 10:38:17 1158
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人