全自动视频着色项目使用教程
automatic-video-colorization 项目地址: https://gitcode.com/gh_mirrors/au/automatic-video-colorization
1. 项目目录结构及介绍
本项目是一个基于TensorFlow的开源项目,用于实现全自动视频着色,包含以下目录结构:
automatic-video-colorization/
├── demo_imgs/ # 存放示例图片
├── demo_vid/ # 存放示例视频
├── lib/ # 项目核心库文件
├── LICENSE # 项目许可证文件
├── README.md # 项目说明文件
├── Teaser.PNG # 项目预览图
├── download_pretrained.sh # 下载预训练模型的脚本
├── environment.yml # 项目环境配置文件
├── flow_warp.py # 流量扭曲相关代码
├── loss.py # 损失函数相关代码
├── main_whole.py # 主程序文件
├── myflowlib.py # 自定义流量库
├── network.py # 网络模型相关代码
├── test.py # 测试图片着色的脚本
├── test_div_video.py # 测试视频着色的脚本
├── utils.py # 工具函数
└── video_utils.py # 视频处理工具
2. 项目的启动文件介绍
项目的启动主要依赖于test.py
和test_div_video.py
两个脚本:
test.py
:用于测试单张图片或文件夹内所有图片的着色效果。test_div_video.py
:用于测试视频的着色效果,需要先使用video_utils.py
将视频转换为帧,再进行着色。
例如,使用test.py
对单张图片进行着色:
python test.py --img_path PATH/TO/IMAGE
3. 项目的配置文件介绍
项目的主要配置文件是environment.yml
,用于配置项目所需的Python环境和依赖库:
name: automatic-video-colorization
channels:
- defaults
dependencies:
- python=3.6
- tensorflow=1.15
- opencv-python
- scipy
- scikit-image
配置文件中指定了Python的版本为3.6,TensorFlow的版本为1.15,以及其他必要的库。
在使用本项目前,你需要创建一个符合该配置的环境,可以使用以下命令:
conda env create -f environment.yml
conda activate automatic-video-colorization
以上是本项目的基本使用教程,按照上述步骤,您可以开始使用全自动视频着色项目。
automatic-video-colorization 项目地址: https://gitcode.com/gh_mirrors/au/automatic-video-colorization
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考