全自动视频着色项目使用教程

全自动视频着色项目使用教程

automatic-video-colorization automatic-video-colorization 项目地址: https://gitcode.com/gh_mirrors/au/automatic-video-colorization

1. 项目目录结构及介绍

本项目是一个基于TensorFlow的开源项目,用于实现全自动视频着色,包含以下目录结构:

automatic-video-colorization/
├── demo_imgs/           # 存放示例图片
├── demo_vid/           # 存放示例视频
├── lib/                # 项目核心库文件
├── LICENSE             # 项目许可证文件
├── README.md           # 项目说明文件
├── Teaser.PNG          # 项目预览图
├── download_pretrained.sh  # 下载预训练模型的脚本
├── environment.yml     # 项目环境配置文件
├── flow_warp.py        # 流量扭曲相关代码
├── loss.py             # 损失函数相关代码
├── main_whole.py       # 主程序文件
├── myflowlib.py        # 自定义流量库
├── network.py          # 网络模型相关代码
├── test.py             # 测试图片着色的脚本
├── test_div_video.py   # 测试视频着色的脚本
├── utils.py            # 工具函数
└── video_utils.py      # 视频处理工具

2. 项目的启动文件介绍

项目的启动主要依赖于test.pytest_div_video.py两个脚本:

  • test.py:用于测试单张图片或文件夹内所有图片的着色效果。
  • test_div_video.py:用于测试视频的着色效果,需要先使用video_utils.py将视频转换为帧,再进行着色。

例如,使用test.py对单张图片进行着色:

python test.py --img_path PATH/TO/IMAGE

3. 项目的配置文件介绍

项目的主要配置文件是environment.yml,用于配置项目所需的Python环境和依赖库:

name: automatic-video-colorization
channels:
  - defaults
dependencies:
  - python=3.6
  - tensorflow=1.15
  - opencv-python
  - scipy
  - scikit-image

配置文件中指定了Python的版本为3.6,TensorFlow的版本为1.15,以及其他必要的库。

在使用本项目前,你需要创建一个符合该配置的环境,可以使用以下命令:

conda env create -f environment.yml
conda activate automatic-video-colorization

以上是本项目的基本使用教程,按照上述步骤,您可以开始使用全自动视频着色项目。

automatic-video-colorization automatic-video-colorization 项目地址: https://gitcode.com/gh_mirrors/au/automatic-video-colorization

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮奕清Primavera

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值