PySpur 开发者指南

PySpur 开发者指南

pyspur Minimalist AI Agent Graph UI pyspur 项目地址: https://gitcode.com/gh_mirrors/py/pyspur

1. 项目介绍

PySpur 是一个为 AI 工程师设计的可视化工作流平台,它允许用户快速迭代 AI 代理,无需重新发明轮子。PySpur 解决了 AI 工程师在构建代理时面临的三个主要问题:提示地狱(长时间的提示调整和试错)、工作流盲点(缺乏对步骤交互的可见性,导致隐藏的错误和混淆)和终端测试噩梦(在原始输出上眯着眼睛手动解析 JSON)。PySpur 提供了一个节省时间的代理 playground,支持多种功能和工具集成。

2. 项目快速启动

要开始使用 PySpur,请按照以下步骤操作:

首先,确保您的系统安装了 Python 3.11 或更高版本。

pip install pyspur

然后,初始化一个新的项目:

pyspur init my-project
cd my-project

这将在新目录中创建一个 .env 文件。

接下来,启动服务器:

pyspur serve --sqlite

默认情况下,这将在 http://localhost:6080 上启动 PySpur 应用,使用 sqlite 数据库。

为了获得更稳定的体验,我们建议您在 .env 文件中配置一个 postgres 实例 URL,并重新启动服务器。

3. 应用案例和最佳实践

以下是一些 PySpur 的应用案例和最佳实践:

  • 定义测试用例:使用 PySpur 的 UI 或 Python 代码定义您的测试用例。
  • 构建代理:通过 UI 或 Python 代码构建您的代理。
  • 迭代优化:利用 PySpur 的迭代功能不断优化您的代理。
  • 部署:一键将您的代理部署为 API,并在任何地方集成。
  • 人类在环中:使用 PySpur 的人类在环中功能,确保工作流的质量控制。

4. 典型生态项目

PySpur 生态系统中的项目通常包括:

  • 工作流构建器:用于可视化和构建代理工作流的工具。
  • 调试工具:用于跟踪和调试代理执行的工具。
  • 数据库集成:与不同类型的数据库(如 Vector DB)集成,以存储和检索数据。
  • API 集成:与各种 API 服务(如 Slack、Google Sheets、GitHub 等)集成。

通过上述指南,您可以开始使用 PySpur 进行 AI 代理的开发和迭代。遵循最佳实践,您可以构建可靠且高效的人工智能解决方案。

pyspur Minimalist AI Agent Graph UI pyspur 项目地址: https://gitcode.com/gh_mirrors/py/pyspur

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

祖崧革

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值