PySpur 开发者指南
pyspur Minimalist AI Agent Graph UI 项目地址: https://gitcode.com/gh_mirrors/py/pyspur
1. 项目介绍
PySpur 是一个为 AI 工程师设计的可视化工作流平台,它允许用户快速迭代 AI 代理,无需重新发明轮子。PySpur 解决了 AI 工程师在构建代理时面临的三个主要问题:提示地狱(长时间的提示调整和试错)、工作流盲点(缺乏对步骤交互的可见性,导致隐藏的错误和混淆)和终端测试噩梦(在原始输出上眯着眼睛手动解析 JSON)。PySpur 提供了一个节省时间的代理 playground,支持多种功能和工具集成。
2. 项目快速启动
要开始使用 PySpur,请按照以下步骤操作:
首先,确保您的系统安装了 Python 3.11 或更高版本。
pip install pyspur
然后,初始化一个新的项目:
pyspur init my-project
cd my-project
这将在新目录中创建一个 .env
文件。
接下来,启动服务器:
pyspur serve --sqlite
默认情况下,这将在 http://localhost:6080
上启动 PySpur 应用,使用 sqlite 数据库。
为了获得更稳定的体验,我们建议您在 .env
文件中配置一个 postgres 实例 URL,并重新启动服务器。
3. 应用案例和最佳实践
以下是一些 PySpur 的应用案例和最佳实践:
- 定义测试用例:使用 PySpur 的 UI 或 Python 代码定义您的测试用例。
- 构建代理:通过 UI 或 Python 代码构建您的代理。
- 迭代优化:利用 PySpur 的迭代功能不断优化您的代理。
- 部署:一键将您的代理部署为 API,并在任何地方集成。
- 人类在环中:使用 PySpur 的人类在环中功能,确保工作流的质量控制。
4. 典型生态项目
PySpur 生态系统中的项目通常包括:
- 工作流构建器:用于可视化和构建代理工作流的工具。
- 调试工具:用于跟踪和调试代理执行的工具。
- 数据库集成:与不同类型的数据库(如 Vector DB)集成,以存储和检索数据。
- API 集成:与各种 API 服务(如 Slack、Google Sheets、GitHub 等)集成。
通过上述指南,您可以开始使用 PySpur 进行 AI 代理的开发和迭代。遵循最佳实践,您可以构建可靠且高效的人工智能解决方案。
pyspur Minimalist AI Agent Graph UI 项目地址: https://gitcode.com/gh_mirrors/py/pyspur