恶意软件包数据集项目教程
项目地址:https://gitcode.com/gh_mirrors/ma/malicious-software-packages-dataset
项目介绍
malicious-software-packages-dataset
是由 Datadog 维护的一个开源数据集,旨在收集和分析在野外发现的恶意软件包。该数据集包含了 1613 个(并且还在不断增加)恶意软件包,主要来自 PyPI 和 NPM 生态系统。这些数据集经过人工审核,确保其准确性和可靠性。
项目快速启动
1. 克隆项目仓库
首先,克隆项目仓库到本地:
git clone https://github.com/DataDog/malicious-software-packages-dataset.git
cd malicious-software-packages-dataset
2. 解压恶意软件包样本
项目中的恶意软件包样本被压缩在一个加密的 ZIP 文件中,密码为 infected
。你可以使用提供的脚本 extract.sh
来自动解压所有样本:
./scripts/extract.sh
或者手动解压单个样本:
unzip -o -P infected samples/pypi/2023-03-20-pydefender-v1.0.0.zip -d /tmp/
3. 查看数据集
解压后的样本可以在 samples/
目录下找到。你可以使用这些样本来进行本地分析和研究。
应用案例和最佳实践
1. 恶意软件检测
该数据集可以用于训练和评估恶意软件检测模型。通过分析这些恶意软件包的行为和特征,可以开发出更有效的检测算法。
2. 软件供应链安全
数据集中的恶意软件包可以帮助企业和开发者更好地理解软件供应链中的安全风险。通过研究这些恶意软件包的传播方式和攻击手段,可以制定更有效的防御策略。
3. 安全研究
研究人员可以使用该数据集来深入研究恶意软件的行为模式和进化趋势。通过对这些样本的分析,可以揭示新的攻击技术和防御方法。
典型生态项目
1. PyPI
PyPI(Python Package Index)是 Python 社区的主要包管理平台。该数据集中包含了大量来自 PyPI 的恶意软件包,这些包通常伪装成合法的 Python 库,但实际上包含恶意代码。
2. NPM
NPM(Node Package Manager)是 Node.js 生态系统中的包管理工具。数据集中也包含了来自 NPM 的恶意软件包,这些包可能通过依赖注入等方式进行攻击。
3. 其他生态系统
虽然目前主要集中在 PyPI 和 NPM,但项目计划未来扩展到其他生态系统,如 Maven、RubyGems 等,以提供更全面的恶意软件包数据集。
通过以上步骤和应用案例,你可以快速上手并深入研究 malicious-software-packages-dataset
项目,为软件供应链安全做出贡献。