Grounding DINO 1.5 API 使用教程

Grounding DINO 1.5 API 使用教程

Grounding-DINO-1.5-APIAPI for Grounding DINO 1.5: IDEA Research's Most Capable Open-World Object Detection Model Series项目地址:https://gitcode.com/gh_mirrors/gr/Grounding-DINO-1.5-API

项目介绍

Grounding DINO 1.5 API 是由 IDEA 研究院计算机视觉与机器人研究中心(CVR)开发的一个开源项目,旨在提供一个强大的开放世界对象检测模型。该模型在多个基准测试中表现出色,特别是在零样本转移和开放词汇检测方面。Grounding DINO 1.5 分为 Pro 版和 Edge 版,分别针对不同的应用场景进行优化。

项目快速启动

环境准备

首先,确保你已经安装了 Python 3.7 或更高版本。然后,克隆项目仓库并安装必要的依赖:

git clone https://github.com/IDEA-Research/Grounding-DINO-1.5-API.git
cd Grounding-DINO-1.5-API
pip install -r requirements.txt

快速示例

以下是一个简单的示例,展示如何使用 Grounding DINO 1.5 API 进行对象检测:

from grounding_dino_1_5_api import GroundingDINO

# 初始化模型
model = GroundingDINO(model_type="pro")

# 加载图像
image_path = "path/to/your/image.jpg"

# 进行对象检测
detections = model.detect(image_path)

# 打印检测结果
for detection in detections:
    print(f"Class: {detection['class']}, Confidence: {detection['confidence']}")

应用案例和最佳实践

自动驾驶

在自动驾驶领域,Grounding DINO 1.5 Edge 可以在车辆上实时运行,实现高效的目标检测和环境感知,提高驾驶安全性。

智能安防

在智能安防中,该模型能快速处理视频监控数据,实时检测异常行为,提升安全监控的响应速度。

机器人交互

在端侧部署的开集检测模型可以使机器人真正和开放环境进行交互,增强机器人的环境适应能力。

典型生态项目

Detrex 物体检测框架

Detrex 是一个物体检测框架,与 Grounding DINO 1.5 结合使用,可以进一步提升物体检测的准确性和效率。

Deep Data Space 数据平台

Deep Data Space 是一个数据平台,支持大规模视觉表示学习,与 Grounding DINO 1.5 结合使用,可以加速数据的处理和分析。

通过以上教程,您应该能够快速上手使用 Grounding DINO 1.5 API,并在不同的应用场景中发挥其强大的功能。

Grounding-DINO-1.5-APIAPI for Grounding DINO 1.5: IDEA Research's Most Capable Open-World Object Detection Model Series项目地址:https://gitcode.com/gh_mirrors/gr/Grounding-DINO-1.5-API

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

### 如何进行 Grounding DINO 测试 #### 地基:Grounding DINO 的核心特性 Grounding DINO 是一种基于多模态数据的目标检测框架,它能够结合文本提示和图像输入来完成开放集目标检测任务。其特点在于支持未见过类别的识别,并通过特征增强模块、语言指导查询选择模块以及跨模态解码模块实现高效的功能集成[^1]。 #### 安装依赖项 为了运行 Grounding DINO,需安装必要的 Python 库及其依赖环境。以下是推荐的设置方式: ```bash pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 pip install git+https://github.com/facebookresearch/detectron2.git@v0.6 pip install transformers timm einops scikit-image opencv-python matplotlib Pillow ``` 如果需要使用 Grounding DINO 1.5,则可参考官方文档进一步扩展所需库列表[^2]。 #### 使用示例代码 以下提供了一个完整的代码片段用于加载模型并对指定图片执行对象检测操作: ```python from grounding_dino_1_5_api import GroundingDINO # 初始化模型实例 (这里可以选择不同的预设版本) model = GroundingDINO(model_type="pro") # 设置待处理的图片路径 image_path = "example_image.jpg" # 调用 detect 方法获取预测结果 detections = model.detect(image_path) # 输出每条记录的具体信息 for idx, detection in enumerate(detections): print(f"Detection #{idx}: Class={detection['class']}, Confidence={round(detection['confidence'], 4)}") ``` 此脚本会读取 `example_image.jpg` 文件中的内容并通过调用已初始化好的 Grounding DINO 实例返回一系列可能存在的物体描述及其置信度得分。 #### 性能对比分析 相较于早期版本,Grounding DINO 1.5 Pro 显示出了显著提升的效果,在面对复杂背景下的小尺寸物品或者低频出现的对象时表现尤为突出。具体来说,新架构增强了对于稀有类别(long-tail targets)的支持力度,并提高了整体语义解析精度水平[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白娥林

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值