Grounding DINO 1.5 API 使用教程
项目介绍
Grounding DINO 1.5 API 是由 IDEA 研究院计算机视觉与机器人研究中心(CVR)开发的一个开源项目,旨在提供一个强大的开放世界对象检测模型。该模型在多个基准测试中表现出色,特别是在零样本转移和开放词汇检测方面。Grounding DINO 1.5 分为 Pro 版和 Edge 版,分别针对不同的应用场景进行优化。
项目快速启动
环境准备
首先,确保你已经安装了 Python 3.7 或更高版本。然后,克隆项目仓库并安装必要的依赖:
git clone https://github.com/IDEA-Research/Grounding-DINO-1.5-API.git
cd Grounding-DINO-1.5-API
pip install -r requirements.txt
快速示例
以下是一个简单的示例,展示如何使用 Grounding DINO 1.5 API 进行对象检测:
from grounding_dino_1_5_api import GroundingDINO
# 初始化模型
model = GroundingDINO(model_type="pro")
# 加载图像
image_path = "path/to/your/image.jpg"
# 进行对象检测
detections = model.detect(image_path)
# 打印检测结果
for detection in detections:
print(f"Class: {detection['class']}, Confidence: {detection['confidence']}")
应用案例和最佳实践
自动驾驶
在自动驾驶领域,Grounding DINO 1.5 Edge 可以在车辆上实时运行,实现高效的目标检测和环境感知,提高驾驶安全性。
智能安防
在智能安防中,该模型能快速处理视频监控数据,实时检测异常行为,提升安全监控的响应速度。
机器人交互
在端侧部署的开集检测模型可以使机器人真正和开放环境进行交互,增强机器人的环境适应能力。
典型生态项目
Detrex 物体检测框架
Detrex 是一个物体检测框架,与 Grounding DINO 1.5 结合使用,可以进一步提升物体检测的准确性和效率。
Deep Data Space 数据平台
Deep Data Space 是一个数据平台,支持大规模视觉表示学习,与 Grounding DINO 1.5 结合使用,可以加速数据的处理和分析。
通过以上教程,您应该能够快速上手使用 Grounding DINO 1.5 API,并在不同的应用场景中发挥其强大的功能。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考