sed_vis 项目教程
sed_visVisualization toolbox for Sound Event Detection项目地址:https://gitcode.com/gh_mirrors/se/sed_vis
1、项目介绍
sed_vis 是一个开源的 Python 工具箱,专门用于可视化声音事件检测系统的注释和系统输出。该项目提供了一种事件滚动类型的可视化工具,可以显示注释和/或系统输出以及音频信号。用户可以播放音频信号,并使用指示条来跟踪音频的进度。
2、项目快速启动
安装
首先,克隆项目仓库并安装必要的依赖:
git clone https://github.com/TUT-ARG/sed_vis.git
cd sed_vis
pip install -r requirements.txt
使用示例
以下是一个简单的使用示例,展示如何加载音频信号和事件列表,并进行可视化:
import sed_vis
import dcase_util
# 加载音频信号
audio_container = dcase_util.containers.AudioContainer()
audio_container.load('tests/data/a001.wav')
# 加载参考事件列表
reference_event_list = dcase_util.containers.MetaDataContainer()
reference_event_list.load('tests/data/a001.ann')
# 加载估计事件列表
estimated_event_list = dcase_util.containers.MetaDataContainer()
estimated_event_list.load('tests/data/a001_system_output.ann')
# 创建事件列表字典
event_lists = {
'reference': reference_event_list,
'estimated': estimated_event_list
}
# 可视化数据
vis = sed_vis.visualization.EventListVisualizer(
event_lists=event_lists,
audio_signal=audio_container.data,
sampling_rate=audio_container.fs
)
vis.show()
3、应用案例和最佳实践
应用案例
sed_vis 可以用于学术研究和工业应用中的声音事件检测系统的开发和评估。例如,研究人员可以使用该工具箱来可视化不同算法在特定数据集上的性能,从而更好地理解算法的优缺点。
最佳实践
- 数据准备:确保音频文件和注释文件格式正确,并且路径一致。
- 参数调整:根据需要调整可视化参数,如事件间隙、字体大小等,以获得最佳的可视化效果。
- 文档记录:详细记录每次可视化的设置和结果,便于后续分析和比较。
4、典型生态项目
sed_vis 可以与其他声音事件检测相关的项目结合使用,例如:
- DCASE Challenge:用于声音事件检测和分类的挑战,sed_vis 可以用于可视化挑战结果。
- Librosa:一个用于音频和音乐分析的 Python 库,可以与 sed_vis 结合使用,进行更复杂的音频处理和分析。
通过这些生态项目的结合,sed_vis 可以为声音事件检测领域提供更全面和强大的工具支持。
sed_visVisualization toolbox for Sound Event Detection项目地址:https://gitcode.com/gh_mirrors/se/sed_vis