ComfyUI-WanVideoWrapper 使用教程
ComfyUI-WanVideoWrapper 项目地址: https://gitcode.com/gh_mirrors/co/ComfyUI-WanVideoWrapper
1. 项目介绍
ComfyUI-WanVideoWrapper 是一个开源项目,它为 ComfyUI 提供了一个包装器节点,用于与 WanVideo 进行交互。WanVideo 是一个视频生成和编辑工具,通过这个包装器,用户可以在 ComfyUI 中更方便地使用 WanVideo 的功能。
2. 项目快速启动
环境准备
在开始之前,确保你已经安装了 Python 和 pip。此外,你还需要克隆该项目到本地环境。
git clone https://github.com/kijai/ComfyUI-WanVideoWrapper.git
cd ComfyUI-WanVideoWrapper
安装依赖
在项目目录中,使用以下命令安装所需的依赖:
pip install -r requirements.txt
如果你使用的是 ComfyUI 的便携式安装版本,你需要在 ComfyUI_windows_portable 文件夹中运行以下命令:
python_embeded\python.exe -m pip install -r ComfyUI\custom_nodes\ComfyUI-WanVideoWrapper\requirements.txt
配置模型
你需要将文本编码器、Transformer 和 Vae 模型放入相应的 ComfyUI 模型文件夹中。可以从 Hugging Face 获取模型。
- 文本编码器放入
ComfyUI/models/text_encoders
- Transformer 放入
ComfyUI/models/diffusion_models
- Vae 放入
ComfyUI/models/vae
3. 应用案例和最佳实践
使用示例
以下是一些使用 ComfyUI-WanVideoWrapper 的示例:
-
TeaCache(使用旧版本):使用 I2V 模型时,阈值值应该设置为原来的 10 倍。使用系数时,0.25-0.30 的范围似乎效果不错,开始步骤可以是 0。如果阈值设置更加激进,可能需要稍后开始以避免早期步骤的跳过,这可能会破坏运动。
-
上下文窗口测试:使用 81 帧的窗口大小和 16 帧的重叠,1.3B 的 T2V 模型在 5090 显卡上使用不到 5GB 的 VRAM,并在 10 分钟内生成视频。
-
Vid2vid 示例:使用 14B 和 1.3B 的 T2V 模型,可以生成不同的视频效果。
最佳实践
- 在使用前,确保所有的模型和依赖都已经正确安装和配置。
- 根据你的硬件配置调整模型的参数,以获得最佳性能和效果。
4. 典型生态项目
目前,ComfyUI-WanVideoWrapper 项目主要是作为一个包装器存在,用于简化 ComfyUI 与 WanVideo 之间的交互。在未来,可能会有更多的开源项目加入到这个生态中,提供更多的功能和改进。
ComfyUI-WanVideoWrapper 项目地址: https://gitcode.com/gh_mirrors/co/ComfyUI-WanVideoWrapper