[ComfyUI]TeaCache:Wan2.1视频生成重大提速超越40%!万相PC视频生成上线

WanX 2.1 TeaCache简介

近期阿里万相Wan2.1视频开源模型以其高质量的视频生成成为开源最强视频生成模型。虽然社区已完成了多项优化,但是由于必究14B的大模型,运行高分辨率视频很慢(大约5-10分钟,具体依赖分辨率等设置)。今天将继续kjijai大佬Wan2.1插件更新:TeaCache(Timestep Embedding Aware Cache ),是一种适用于视频扩散模型、图像扩散模型和音频扩散模型等,无需训练的缓存方法,可以估计和利用模型输出在时间步上的波动差异,从而加速推理。这在很大程度无显著视频质量损失前提下提升推理整体速率,大约提升可节40% 的时间。这与之前的Flux和混元加速方式一样(参见文章:[[ComfyUI]首块缓存:全方位模型推理加速神器。适用于黑森林Flux&腾讯混元视频&LTXV众多模型显著]。另外PyTorch 2.7.0版本也更新了环境优化,如果使用的是最新版 PyTorch 2.7.0 nightly版本,则可以基础精度设置为fp16_fast,还会带来额外提升 20%的加速

另外,近期通义万相团队已上线了PC在线平台,使用手机注册和登录打卡就可以每天获取100积分用于在线视频生成(每个视频5积分,大约可以20多次,还有更多任务可获取积分),并且支持文生视频、图生视频以及首尾帧等功能。网址:https://tongyi.aliyun.com/wanxiang/videoCreation

Wan2.1视频TeaCache加速ComfyUI体验

本文将继续使用kijaiComfyUI-WanVideoWrapper插件体验,因此请确保将该插件更新到最新代码集。模型文末网盘获取!

Wan2.1视频TeaCache加速ComfyUI工作流

Wan2.1视频TeaCache加速ComfyUI工作流已下载地址:https://www.runninghub.cn/post/1896568283456528386/aiDetail?utm_source=kol01-RH059

注意:
  • TeaCache加速是采用估计和利用模型输出在时间步上的波动差异从而加速推理的缓存方法。因此,这也是在质量和速率权衡方案,具体参数需要在实际场景中平衡。

  • TeaCache加速主要新增节点WanVideo TeaCache实现。包含rel_l1_threshstrat_step两个核心参数,保持默认配置即可得到较好的加速收益。同时节点参数也是可以调节的,其中rel_l1_thresh值越大则加速越快速,但这是以质量牺牲多少为代价,**建议值:0.025 ~ 0.040左右strat_step参数则代表从第几步开始加速,加速步骤占总步数比例越多则越快速,建议保持默认。

  • • 开启保持插件默认配置质量无显著牺牲前提下:加速后480*720分辨率81帧约耗时168秒(2-3分钟)

  • • 另外果使用的是最新版 PyTorch 2.7.0 nightly版本,则可以基础精度设置为fp16_fast,还会带来额外提升 20%的加速

01.在线-古风

三维渲染古风数字艺术场景,两位身着飘逸汉服的年轻人于轻纱之上悠然漫步,互动交流,仿佛跨越时空的旅者。地面是由细腻笔触描绘的竹叶图案,随风摇曳生姿,如同真实的竹林在微风中低语。整个空间由精巧的折叠模型构成,宛若一幅展开的书法画卷,充满了东方美学的禅意与无限遐想。阳光穿透轻盈的纱幔,洒下斑驳陆离的光影,营造出梦幻般的氛围,现实与虚拟界限模糊,发光效果增添了几分神秘色彩。构图大胆留白,薄纱作为前景,浅景深聚焦于人物,高清晰度细节捕捉每一个精致瞬间,展现出三维古风场景的独特魅力。

02. 图生视频-Love

一个女人双手缓慢拿出一个白色纸条,纸条上用中文字体写着四个大字“Love me?”

03.图生视频-跨屏幕牵手

电脑屏幕中的女人伸出双手与电脑前男人牵手

网盘下载

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
### 关于WAN 2.1本地配置问题解决方案 对于在Windows环境下部署通义万相Wan2.1模型并进行视频生成任务遇到的问题,可以遵循以下指导来排查和解决问题[^1]。 #### 故障排除流程 当面对无法启动服务的情况时,建议先确认环境变量设置是否正确以及Python版本是否兼容。通常推荐使用虚拟环境来进行项目开发,这样能够有效隔离不同项目的依赖关系,减少冲突的可能性。 如果遇到安装特定库失败的情形,则需注意检查pip源地址是否正常工作,并尝试更换国内镜像站点加速下载速度;另外还需确保操作系统已安装必要的编译工具集如Visual C++ Build Tools等。 针对硬件加速方面的问题,比如CUDA驱动不匹配导致GPU计算能力未能被充分利用,应当依据显卡型号前往NVIDIA官方网站获取最新版驱动程序完成更新操作。 对于具体错误提示信息中的`ImportError`或`ModuleNotFoundError`类异常,往往是因为缺少某些第三方模块所致。此时可通过阅读官方文档了解所需全部外部包清单,并逐一验证它们的存在状态。 最后,在执行推理过程中若碰见内存溢出报错,除了考虑降低批处理大小外,还可以探索优化算法参数设定以缓解资源占用压力。 ```bash # 创建并激活虚拟环境 python -m venv wan_env .\wan_env\Scripts\activate.bat # 安装基础依赖项 pip install --upgrade pip pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple/ pip install -r requirements.txt ``` #### 日志分析技巧 日志文件是定位故障根源的重要线索之一。一般情况下,应用程序会在运行目录下自动生成`.log`结尾的日志记录文本。通过查阅这些日志内容可以帮助快速锁定出现问题的具体位置及其上下文背景信息。 为了便于后续维护人员理解情况,可以在提交技术支持请求前整理好相关日志片段作为附件上传给对方审阅。同时附带描述清楚现象发生的时间节点、触发条件以及其他可能影响因素。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值