OpenAI CUA 示例应用:安装与使用指南
openai-cua-sample-app 项目地址: https://gitcode.com/gh_mirrors/op/openai-cua-sample-app
1. 项目目录结构及介绍
OpenAI CUA 示例应用的项目目录结构如下:
openai-cua-sample-app/
├── agent/
│ ├── __init__.py
│ ├── agent.py
├── computers/
│ ├── __init__.py
│ ├── computer.py
│ ├── local-playwright.py
│ ├── docker.py
│ ├── browserbase.py
│ ├── scrapybara-browser.py
│ └── scrapybara-ubuntu.py
├── examples/
│ ├── __init__.py
│ ├── weather_example.py
├── .env.example
├── .gitignore
├── Dockerfile
├── LICENSE
├── README.md
├── __init__.py
├── cli.py
├── main.py
├── requirements.txt
└── simple_cua_loop.py
目录解释:
- agent/: 包含 CUA 代理的实现,包括
agent.py
,它定义了代理的主要逻辑。 - computers/: 包含不同计算机环境的实现,例如本地浏览器、Docker 容器等。
- examples/: 包含示例脚本,用于展示如何使用 CUA。
- .env.example: 配置文件示例,用于存储环境变量。
- .gitignore: 定义了 Git 忽略的文件和目录。
- Dockerfile: 用于构建 Docker 容器的文件。
- LICENSE: 项目许可证文件。
- README.md: 项目说明文件。
- init.py: 初始化 Python 包。
- cli.py: 命令行界面脚本,用于启动和配置 CUA。
- main.py: 主程序文件。
- requirements.txt: 项目依赖文件。
- simple_cua_loop.py: 一个简单的 CUA 循环实现。
2. 项目的启动文件介绍
项目的启动文件是 main.py
。这个文件负责初始化和运行 CUA 代理。
以下是一个简单的 main.py
文件内容示例:
import sys
from agent.agent import Agent
from computers.computer import Computer
def main():
# 初始化计算机环境
computer = Computer()
# 初始化代理
agent = Agent(computer)
# 运行代理
agent.run()
if __name__ == "__main__":
main()
在这个文件中,我们首先导入必要的模块,然后定义一个 main
函数,它初始化计算机环境和代理,最后运行代理。if __name__ == "__main__":
确保当文件被直接运行时,main
函数会被调用。
3. 项目的配置文件介绍
项目的配置文件是 .env.example
。这个文件包含了项目运行所需的环境变量。
以下是一个 .env.example
文件的内容示例:
# Docker环境变量
DOCKER_HOST=tcp://localhost:2375
DOCKER_TLS_VERIFY=1
DOCKER_CERT_PATH=/path/to/certs
DOCKER_CA_CERT_PATH=/path/to/ca
DOCKER_API_VERSION=1.35
# Browserbase API key
BROWSERBASE_API_KEY=your_browserbase_api_key
# Scrapybara API key
SCRAPYBARA_API_KEY=your_scrapybara_api_key
在这个文件中,我们定义了 Docker 相关的环境变量以及远程浏览器环境的 API 密钥。这些环境变量在运行 CUA 代理时会被读取,用于配置不同环境的参数。
请注意,.env.example
文件是一个示例文件,实际使用时需要创建一个 .env
文件,并将示例中的占位符替换为实际的值。
openai-cua-sample-app 项目地址: https://gitcode.com/gh_mirrors/op/openai-cua-sample-app