LibreFace 项目使用教程
1. 项目的目录结构及介绍
LibreFace 项目是一个开源的深度面部表情分析工具,其目录结构如下:
AU_Detection
: 面部动作单元(AU)检测相关代码和文件AU_Recognition
: 面部动作单元(AU)识别相关代码和文件Facial_Expression_Recognition
: 面部表情识别相关代码和文件examples
: 示例文件和脚本libreface
: 主项目代码库media
: 媒体文件,如图片和视频.gitignore
: Git 忽略文件列表LICENSE.rst
: 项目许可证文件MANIFEST.in
: 打包配置文件README.md
: 项目说明文件README_pypi.rst
: PyPI 项目说明文件create_csv.py
: 用于创建 CSV 文件的脚本detect_mediapipe.py
: 使用 MediaPipe 进行面部检测的脚本extract_frames_DISFA.py
: 从视频中提取帧的脚本requirements.txt
: 项目依赖文件requirements_new.txt
: 新版本的依赖文件setup.py
: 项目安装脚本test_libreface.py
: 项目测试脚本
2. 项目的启动文件介绍
项目的启动文件主要是 setup.py
,它用于配置和安装 Python 包。以下是 setup.py
的基本内容:
from setuptools import setup, find_packages
setup(
name='libreface',
version='0.1.0',
packages=find_packages(),
install_requires=[
'numpy',
'torch',
'opencv-python',
'pandas',
],
entry_points={
'console_scripts': [
'libreface=libreface.__main__:main',
],
},
)
该文件定义了项目的名称、版本、包、依赖项和命令行脚本入口。使用 pip install .
命令安装项目时,会使用该文件。
3. 项目的配置文件介绍
项目的配置文件主要是 requirements.txt
,它列出了项目运行所需的 Python 包依赖。以下是 requirements.txt
的内容示例:
numpy
torch
opencv-python
pandas
这些依赖可以通过 pip install -r requirements.txt
命令安装。此外,如果需要使用 GPU 加速,还需要确保 torch
包安装了与系统兼容的 GPU 版本。
确保正确安装所有依赖后,你就可以使用 LibreFace 进行面部表情分析了。项目的具体使用方法和示例可以在 README.md
文件中找到。