Smooth Diffusion 开源项目教程
项目介绍
Smooth Diffusion 是一个新型的扩散模型,旨在同时实现高性能和光滑性。该项目通过正式引入潜在空间的光滑性到扩散模型中,如 Stable Diffusion,显著改善了图像插值的连续性,减少了图像反转中的近似误差,并更好地保留了图像编辑中的未编辑内容。
项目快速启动
环境设置
首先,克隆项目仓库并设置环境:
git clone https://github.com/SHI-Labs/Smooth-Diffusion.git
cd Smooth-Diffusion
conda create --name smooth-diffusion python=3.9
conda activate smooth-diffusion
pip install torch==2.0.0 torchvision==0.15.1 torchaudio==2.0.1
pip install -r requirements.txt
运行示例
启动 Gradio WebUI 进行推理:
python app.py
应用案例和最佳实践
图像插值
Smooth Diffusion 在图像插值方面表现出色,能够生成平滑的过渡效果。以下是一个简单的示例代码:
from smooth_diffusion import SmoothDiffusion
model = SmoothDiffusion()
interpolated_image = model.interpolate(image1, image2, steps=50)
interpolated_image.save("interpolated_image.png")
图像编辑
在图像编辑方面,Smooth Diffusion 能够更好地保留未编辑区域的内容,同时对编辑区域进行平滑处理。以下是一个示例代码:
from smooth_diffusion import SmoothDiffusion
model = SmoothDiffusion()
edited_image = model.edit(original_image, mask, edited_region)
edited_image.save("edited_image.png")
典型生态项目
Huggingface Spaces
Smooth Diffusion 的演示可以在 Huggingface Spaces 上找到,这是一个集成了多种机器学习模型的平台,用户可以轻松地测试和部署模型。
Stable Diffusion
Smooth Diffusion 是基于 Stable Diffusion 开发的,Stable Diffusion 是一个广泛使用的扩散模型,Smooth Diffusion 在此基础上进一步优化了潜在空间的光滑性。
通过以上教程,您可以快速上手 Smooth Diffusion 项目,并在图像处理和编辑中应用其强大的功能。