Smooth Diffusion 开源项目教程

Smooth Diffusion 开源项目教程

Smooth-Diffusion[CVPR 2024] Smooth Diffusion: Crafting Smooth Latent Spaces in Diffusion Models项目地址:https://gitcode.com/gh_mirrors/smo/Smooth-Diffusion

项目介绍

Smooth Diffusion 是一个新型的扩散模型,旨在同时实现高性能和光滑性。该项目通过正式引入潜在空间的光滑性到扩散模型中,如 Stable Diffusion,显著改善了图像插值的连续性,减少了图像反转中的近似误差,并更好地保留了图像编辑中的未编辑内容。

项目快速启动

环境设置

首先,克隆项目仓库并设置环境:

git clone https://github.com/SHI-Labs/Smooth-Diffusion.git
cd Smooth-Diffusion

conda create --name smooth-diffusion python=3.9
conda activate smooth-diffusion

pip install torch==2.0.0 torchvision==0.15.1 torchaudio==2.0.1
pip install -r requirements.txt

运行示例

启动 Gradio WebUI 进行推理:

python app.py

应用案例和最佳实践

图像插值

Smooth Diffusion 在图像插值方面表现出色,能够生成平滑的过渡效果。以下是一个简单的示例代码:

from smooth_diffusion import SmoothDiffusion

model = SmoothDiffusion()
interpolated_image = model.interpolate(image1, image2, steps=50)
interpolated_image.save("interpolated_image.png")

图像编辑

在图像编辑方面,Smooth Diffusion 能够更好地保留未编辑区域的内容,同时对编辑区域进行平滑处理。以下是一个示例代码:

from smooth_diffusion import SmoothDiffusion

model = SmoothDiffusion()
edited_image = model.edit(original_image, mask, edited_region)
edited_image.save("edited_image.png")

典型生态项目

Huggingface Spaces

Smooth Diffusion 的演示可以在 Huggingface Spaces 上找到,这是一个集成了多种机器学习模型的平台,用户可以轻松地测试和部署模型。

Stable Diffusion

Smooth Diffusion 是基于 Stable Diffusion 开发的,Stable Diffusion 是一个广泛使用的扩散模型,Smooth Diffusion 在此基础上进一步优化了潜在空间的光滑性。

通过以上教程,您可以快速上手 Smooth Diffusion 项目,并在图像处理和编辑中应用其强大的功能。

Smooth-Diffusion[CVPR 2024] Smooth Diffusion: Crafting Smooth Latent Spaces in Diffusion Models项目地址:https://gitcode.com/gh_mirrors/smo/Smooth-Diffusion

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

单迅秋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值