RISC-V K210 开源项目最佳实践教程
riscv-k210 K210 PCB YOLO 项目地址: https://gitcode.com/gh_mirrors/ri/riscv-k210
1. 项目介绍
RISC-V K210 是一款基于 RISC-V 架构的开源开发板,由 Kendryte(晶心科技)开发。它具备神经网络处理能力,适合进行嵌入式人工智能开发。本项目旨在提供一个 K210 开发板的全方位教程,包括硬件原理图、官方 SDK(基于 C 语言)、MaixPy(基于 Micropython)以及 CanMv(基于 Micropython)等支持,并提供 YOLO 目标检测的详细案例。
2. 项目快速启动
以下是基于 Windows 系统的 K210 开发环境搭建和快速启动步骤:
环境搭建
-
下载并安装 Cmake V3.0 或更高版本的 Windows 版本,将其安装到
D:\cmake
目录,并将D:\cmake\bin
目录添加到 PATH 环境变量。 -
从 kendryte-gnu-toolchain 下载 Windows 版本工具链。配置环境变量后,重新打开一个 cmd 窗口,输入
riscv64-unknown-elf-gcc -v
命令,若看到编译器版本信息则设置正确。 -
安装 MingW 编译工具。
创建工程
-
使用 VSCode 打开项目源码,并启动终端窗口。
-
切换到源码目录,创建 build 目录:
mkdir build cd build
-
运行 cmake 命令:
cmake .. -DPROJ=k210-yolo -G "MinGW Makefiles"
若输出结果正常,则继续。
-
在 build 目录下编译项目:
make -j
烧录固件
-
安装命令行版本烧录固件工具:
pip3 install kflash
-
使用 kflash 烧录固件:
kflash -p COM3 -b 2000000 -B bit ./k210-yolo.bin
请根据实际情况选择正确的串口(COM3)和波特率。
3. 应用案例和最佳实践
以下是几个基于 K210 开发板的应用案例和最佳实践:
使用 MaixPy 进行图像处理
-
烧录 MaixPy 固件到 K210 开发板。
-
使用 MaixPy 进行图像处理和神经网络推理。
使用 CanMV 进行图像识别
-
烧录 CanMV 固件到 K210 开发板。
-
利用 CanMV 进行图像识别和目标检测。
实现基于 YOLO 的目标检测
-
使用 K210 开发板的神经网络处理能力,实现 YOLO 目标检测算法。
-
集成到实际应用中,如智能监控、无人驾驶等。
4. 典型生态项目
以下是几个与 K210 开发板相关的典型生态项目:
-
Kendryte SDK:Kendryte 官方提供的软件开发套件,支持基于 C 语言的开发。
-
MaixPy:基于 Micropython 的开发环境,简化了 K210 开发板的编程。
-
CanMV:基于 Micropython 的图像识别库,适用于 K210 开发板。
以上是 RISC-V K210 开源项目的最佳实践教程,希望对您的开发工作有所帮助。
riscv-k210 K210 PCB YOLO 项目地址: https://gitcode.com/gh_mirrors/ri/riscv-k210
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考