tsam 项目教程
1. 项目介绍
tsam(Time Series Aggregation Module)是一个用于时间序列聚合的 Python 包。它使用不同的机器学习算法来聚合时间序列数据。tsam 可以应用于各种类型的时间序列数据,如天气数据、负荷数据等。其主要目的是通过聚合输入数据来减少大规模能源系统优化模型的计算负载,但也可用于其他类型的时间序列数据。
tsam 的核心功能包括:
- 通过用户定义的典型周期数来表示时间序列。
- 通过降低时间分辨率来减少时间序列的维度。
tsam 是开源项目,代码托管在 GitHub 上,地址为:https://github.com/FZJ-IEK3-VSA/tsam。
2. 项目快速启动
安装 tsam
首先,你需要将 tsam 项目克隆到本地:
git clone https://github.com/FZJ-IEK3-VSA/tsam.git
然后,进入项目目录并使用 pip 安装 tsam:
cd tsam
pip install .
使用 tsam
以下是一个简单的示例,展示如何使用 tsam 进行时间序列聚合:
import pandas as pd
import tsam.timeseriesaggregation as tsam
# 读取时间序列数据
raw = pd.read_csv('your_time_series_data.csv', index_col=0)
# 进行时间序列聚合
aggregated = tsam.TimeSeriesAggregation(raw, noTypicalPeriods=8)
# 获取聚合结果
aggregated_data = aggregated.createTypicalPeriods()
# 打印聚合结果
print(aggregated_data)
3. 应用案例和最佳实践
案例1:能源系统优化
tsam 最初设计用于减少大规模能源系统优化模型的计算负载。通过聚合输入数据,可以显著减少模型的复杂性和计算时间。以下是一个简单的应用案例:
# 读取能源系统数据
energy_data = pd.read_csv('energy_system_data.csv', index_col=0)
# 进行时间序列聚合
aggregated_energy = tsam.TimeSeriesAggregation(energy_data, noTypicalPeriods=12)
# 获取聚合结果
energy_aggregated_data = aggregated_energy.createTypicalPeriods()
# 打印聚合结果
print(energy_aggregated_data)
案例2:天气数据聚合
tsam 也可以用于天气数据的聚合。以下是一个简单的应用案例:
# 读取天气数据
weather_data = pd.read_csv('weather_data.csv', index_col=0)
# 进行时间序列聚合
aggregated_weather = tsam.TimeSeriesAggregation(weather_data, noTypicalPeriods=4)
# 获取聚合结果
weather_aggregated_data = aggregated_weather.createTypicalPeriods()
# 打印聚合结果
print(weather_aggregated_data)
4. 典型生态项目
能源系统优化工具
tsam 可以与以下能源系统优化工具结合使用:
- Pyomo: 一个用于建模和优化能源系统的 Python 库。
- oemof: 一个用于能源系统建模和优化的开源框架。
数据分析工具
tsam 可以与以下数据分析工具结合使用:
- Pandas: 用于数据处理和分析的 Python 库。
- NumPy: 用于科学计算的 Python 库。
通过结合这些工具,可以更高效地进行时间序列数据的聚合和分析。