Lighteval 开源项目教程

Lighteval 开源项目教程

lighteval LightEval is a lightweight LLM evaluation suite that Hugging Face has been using internally with the recently released LLM data processing library datatrove and LLM training library nanotron. lighteval 项目地址: https://gitcode.com/gh_mirrors/li/lighteval

1、项目介绍

Lighteval 是一个由 Hugging Face 开发的工具包,旨在为大型语言模型(LLMs)提供全面的评估功能。它支持多种后端,包括 transformers、tgi、vllm 和 nanotron,使用户能够轻松地评估模型的性能。Lighteval 不仅提供了丰富的任务和指标,还允许用户自定义任务和指标,以满足特定的评估需求。此外,Lighteval 还支持将评估结果存储在 Hugging Face Hub、S3 或本地,方便用户进行结果的分析和比较。

2、项目快速启动

安装

首先,通过 pip 安装 Lighteval:

pip install lighteval[accelerate]

如果你需要将结果推送到 Hugging Face Hub,请添加你的访问令牌:

huggingface-cli login

快速启动

使用 Lighteval 的 Accelerate 后端进行模型评估的快速命令如下:

lighteval accelerate \
  --model_args "pretrained=gpt2" \
  --tasks "leaderboard|truthfulqa:mc|0|0" \
  --override_batch_size 1 \
  --output_dir="/evals/"

3、应用案例和最佳实践

应用案例

Lighteval 可以用于多种场景,例如:

  • 模型性能评估:通过 Lighteval,用户可以快速评估不同模型的性能,并生成详细的评估报告。
  • 自定义任务评估:用户可以根据自己的需求创建自定义任务,并使用 Lighteval 进行评估。
  • 结果存储与分析:Lighteval 支持将评估结果存储在 Hugging Face Hub 或 S3,方便用户进行后续的分析和比较。

最佳实践

  • 选择合适的后端:根据模型的类型和评估需求,选择合适的后端(如 vllm 或 accelerate)。
  • 自定义任务:根据具体的应用场景,创建自定义任务,以更准确地评估模型的性能。
  • 结果分析:利用 Lighteval 生成的详细报告,深入分析模型的性能,找出改进的方向。

4、典型生态项目

Lighteval 作为一个评估工具,与多个开源项目和生态系统紧密结合,包括:

  • Hugging Face Transformers:Lighteval 支持对 Hugging Face 的 Transformers 库中的模型进行评估。
  • Eleuther AI Harness:Lighteval 最初是作为 Eleuther AI Harness 的扩展开发的,两者在评估 LLMs 方面有很强的互补性。
  • HELM Framework:Lighteval 从 HELM 框架中汲取灵感,提供了丰富的评估任务和指标。

通过这些生态项目的结合,Lighteval 为用户提供了更全面、更灵活的评估解决方案。

lighteval LightEval is a lightweight LLM evaluation suite that Hugging Face has been using internally with the recently released LLM data processing library datatrove and LLM training library nanotron. lighteval 项目地址: https://gitcode.com/gh_mirrors/li/lighteval

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邬楠满Seaman

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值