Lighteval 开源项目教程
1、项目介绍
Lighteval 是一个由 Hugging Face 开发的工具包,旨在为大型语言模型(LLMs)提供全面的评估功能。它支持多种后端,包括 transformers、tgi、vllm 和 nanotron,使用户能够轻松地评估模型的性能。Lighteval 不仅提供了丰富的任务和指标,还允许用户自定义任务和指标,以满足特定的评估需求。此外,Lighteval 还支持将评估结果存储在 Hugging Face Hub、S3 或本地,方便用户进行结果的分析和比较。
2、项目快速启动
安装
首先,通过 pip 安装 Lighteval:
pip install lighteval[accelerate]
如果你需要将结果推送到 Hugging Face Hub,请添加你的访问令牌:
huggingface-cli login
快速启动
使用 Lighteval 的 Accelerate 后端进行模型评估的快速命令如下:
lighteval accelerate \
--model_args "pretrained=gpt2" \
--tasks "leaderboard|truthfulqa:mc|0|0" \
--override_batch_size 1 \
--output_dir="/evals/"
3、应用案例和最佳实践
应用案例
Lighteval 可以用于多种场景,例如:
- 模型性能评估:通过 Lighteval,用户可以快速评估不同模型的性能,并生成详细的评估报告。
- 自定义任务评估:用户可以根据自己的需求创建自定义任务,并使用 Lighteval 进行评估。
- 结果存储与分析:Lighteval 支持将评估结果存储在 Hugging Face Hub 或 S3,方便用户进行后续的分析和比较。
最佳实践
- 选择合适的后端:根据模型的类型和评估需求,选择合适的后端(如 vllm 或 accelerate)。
- 自定义任务:根据具体的应用场景,创建自定义任务,以更准确地评估模型的性能。
- 结果分析:利用 Lighteval 生成的详细报告,深入分析模型的性能,找出改进的方向。
4、典型生态项目
Lighteval 作为一个评估工具,与多个开源项目和生态系统紧密结合,包括:
- Hugging Face Transformers:Lighteval 支持对 Hugging Face 的 Transformers 库中的模型进行评估。
- Eleuther AI Harness:Lighteval 最初是作为 Eleuther AI Harness 的扩展开发的,两者在评估 LLMs 方面有很强的互补性。
- HELM Framework:Lighteval 从 HELM 框架中汲取灵感,提供了丰富的评估任务和指标。
通过这些生态项目的结合,Lighteval 为用户提供了更全面、更灵活的评估解决方案。