开源项目安装与配置指南:Diffusion-Pipe
一、项目基础介绍
项目名称:Diffusion-Pipe
项目简介:Diffusion-Pipe 是一个用于训练扩散模型(diffusion models)的管道并行训练脚本。它支持多种图像和视频模型,并提供了一些实用的特性,如管道并行性、Tensorboard 日志记录、评估集上的指标计算、训练状态检查点以及高效的多进程多GPU预取技术。
主要编程语言:Python
二、项目使用的关键技术和框架
- 管道并行性:通过使用 Deepspeed 框架,项目实现了管道并行性,允许训练比单个GPU内存限制更大的模型。
- Tensorboard:用于记录和可视化训练过程中的指标和日志。
- PyTorch:底层的深度学习框架,用于构建和训练模型。
- Pillow 和 ImageIO:用于处理图像和视频数据。
三、项目安装和配置的准备工作
在开始安装前,请确保您的系统中已经安装了以下依赖:
- Python 3.12
- CUDA (与您的PyTorch版本兼容)
- Git
安装步骤
-
克隆项目仓库
使用 Git 命令克隆仓库:
git clone --recurse-submodules https://github.com/tdrussell/diffusion-pipe.git
如果之前克隆时忘记了
--recurse-submodules
参数,可以使用以下命令初始化和更新子模块:git submodule init git submodule update
-
安装 Miniconda
从 Miniconda 官网 下载并安装 Miniconda。
-
创建并激活虚拟环境
创建一个名为
diffusion-pipe
的虚拟环境,并激活它:conda create -n diffusion-pipe python=3.12 conda activate diffusion-pipe
-
安装 CUDA 编译器
使用以下命令安装与系统中的 PyTorch 版本兼容的 CUDA 编译器:
conda install -c nvidia cuda-nvcc
-
安装项目依赖
使用以下命令安装项目所需的依赖:
pip install -r requirements.txt
注意:如果项目使用了额外的库,如 TransformerEngine,可能需要安装额外的编译器或库。
-
准备数据集
将图像或视频文件及其相应的描述文本文件放入一个或多个目录中。每个媒体文件应有一个相应的文本文件,例如
image1.png
应有一个image1.txt
。 -
开始训练
在熟悉了示例配置文件后,创建一个自己的配置文件,并修改所有路径以适应您的设置。然后使用以下命令开始训练:
NCCL_P2P_DISABLE="1" NCCL_IB_DISABLE="1" deepspeed --num_gpus=1 train.py --deepspeed --config examples/hunyuan_video.toml
注意:某些GPU可能需要设置额外的环境变量,如 RTX 4000 系列。
通过以上步骤,您可以成功安装并开始使用 Diffusion-Pipe 项目进行扩散模型的训练。