开源项目安装与配置指南:Diffusion-Pipe

开源项目安装与配置指南:Diffusion-Pipe

diffusion-pipe A pipeline parallel training script for diffusion models. diffusion-pipe 项目地址: https://gitcode.com/gh_mirrors/di/diffusion-pipe

一、项目基础介绍

项目名称:Diffusion-Pipe

项目简介:Diffusion-Pipe 是一个用于训练扩散模型(diffusion models)的管道并行训练脚本。它支持多种图像和视频模型,并提供了一些实用的特性,如管道并行性、Tensorboard 日志记录、评估集上的指标计算、训练状态检查点以及高效的多进程多GPU预取技术。

主要编程语言:Python

二、项目使用的关键技术和框架

  • 管道并行性:通过使用 Deepspeed 框架,项目实现了管道并行性,允许训练比单个GPU内存限制更大的模型。
  • Tensorboard:用于记录和可视化训练过程中的指标和日志。
  • PyTorch:底层的深度学习框架,用于构建和训练模型。
  • Pillow 和 ImageIO:用于处理图像和视频数据。

三、项目安装和配置的准备工作

在开始安装前,请确保您的系统中已经安装了以下依赖:

  • Python 3.12
  • CUDA (与您的PyTorch版本兼容)
  • Git

安装步骤

  1. 克隆项目仓库

    使用 Git 命令克隆仓库:

    git clone --recurse-submodules https://github.com/tdrussell/diffusion-pipe.git
    

    如果之前克隆时忘记了 --recurse-submodules 参数,可以使用以下命令初始化和更新子模块:

    git submodule init
    git submodule update
    
  2. 安装 Miniconda

    Miniconda 官网 下载并安装 Miniconda。

  3. 创建并激活虚拟环境

    创建一个名为 diffusion-pipe 的虚拟环境,并激活它:

    conda create -n diffusion-pipe python=3.12
    conda activate diffusion-pipe
    
  4. 安装 CUDA 编译器

    使用以下命令安装与系统中的 PyTorch 版本兼容的 CUDA 编译器:

    conda install -c nvidia cuda-nvcc
    
  5. 安装项目依赖

    使用以下命令安装项目所需的依赖:

    pip install -r requirements.txt
    

    注意:如果项目使用了额外的库,如 TransformerEngine,可能需要安装额外的编译器或库。

  6. 准备数据集

    将图像或视频文件及其相应的描述文本文件放入一个或多个目录中。每个媒体文件应有一个相应的文本文件,例如 image1.png 应有一个 image1.txt

  7. 开始训练

    在熟悉了示例配置文件后,创建一个自己的配置文件,并修改所有路径以适应您的设置。然后使用以下命令开始训练:

    NCCL_P2P_DISABLE="1" NCCL_IB_DISABLE="1" deepspeed --num_gpus=1 train.py --deepspeed --config examples/hunyuan_video.toml
    

    注意:某些GPU可能需要设置额外的环境变量,如 RTX 4000 系列。

通过以上步骤,您可以成功安装并开始使用 Diffusion-Pipe 项目进行扩散模型的训练。

diffusion-pipe A pipeline parallel training script for diffusion models. diffusion-pipe 项目地址: https://gitcode.com/gh_mirrors/di/diffusion-pipe

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苏玥隽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值