Applied-Predictive-Modeling-with-Python 项目教程

Applied-Predictive-Modeling-with-Python 项目教程

Applied-Predictive-Modeling-with-Python A collection of notebook to learn the Applied Predictive Modeling using Python. Applied-Predictive-Modeling-with-Python 项目地址: https://gitcode.com/gh_mirrors/ap/Applied-Predictive-Modeling-with-Python

1. 项目介绍

Applied-Predictive-Modeling-with-Python 是一个开源项目,旨在通过使用 Python 实现《Applied Predictive Modeling》(Kuhn 和 Johnson 著)一书中的内容。该项目包含了一系列 Jupyter Notebook,帮助读者学习和应用预测建模技术。这些 Notebook 不仅重现了书中的示例,还提供了练习的解决方案和学习笔记,适合希望使用 Python 深入研究预测建模的读者。

2. 项目快速启动

2.1 环境准备

在开始之前,请确保你已经安装了以下工具:

  • Python 3.x
  • Jupyter Notebook
  • Git

2.2 克隆项目

首先,克隆项目到本地:

git clone https://github.com/LeiG/Applied-Predictive-Modeling-with-Python.git
cd Applied-Predictive-Modeling-with-Python

2.3 启动 Jupyter Notebook

进入项目目录后,启动 Jupyter Notebook:

jupyter notebook

2.4 运行示例

打开 notebooks 目录下的任意 Notebook,例如 Chapter 2.ipynb,按照步骤运行代码。

3. 应用案例和最佳实践

3.1 案例:回归模型

Chapter 6 中,项目详细介绍了线性回归及其变种。通过运行相关代码,你可以学习如何构建和评估回归模型。

3.2 案例:分类模型

Chapter 11 提供了分类模型的性能测量方法。通过运行相关代码,你可以学习如何选择和优化分类模型。

3.3 最佳实践

  • 数据预处理:在 Chapter 3 中,项目详细介绍了数据预处理的方法,包括缺失值处理、数据标准化等。
  • 模型调优:在 Chapter 4 中,项目介绍了如何通过交叉验证和网格搜索来调优模型参数。

4. 典型生态项目

4.1 Scikit-Learn

Applied-Predictive-Modeling-with-Python 项目大量使用了 scikit-learn 库,这是一个用于机器学习的 Python 库,提供了丰富的算法和工具。

4.2 Pandas

项目中还使用了 pandas 库进行数据处理和分析,pandas 是一个强大的数据处理工具,适合用于数据清洗和预处理。

4.3 Matplotlib 和 Seaborn

为了可视化数据和模型结果,项目使用了 matplotlibseaborn 库,这两个库提供了丰富的绘图功能。

通过这些生态项目的结合使用,Applied-Predictive-Modeling-with-Python 项目能够帮助你全面掌握预测建模的各个环节。

Applied-Predictive-Modeling-with-Python A collection of notebook to learn the Applied Predictive Modeling using Python. Applied-Predictive-Modeling-with-Python 项目地址: https://gitcode.com/gh_mirrors/ap/Applied-Predictive-Modeling-with-Python

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宣勇磊Tanya

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值