Hindsight Experience Replay 开源项目教程

Hindsight Experience Replay 开源项目教程

hindsight-experience-replayThis is the pytorch implementation of Hindsight Experience Replay (HER) - Experiment on all fetch robotic environments.项目地址:https://gitcode.com/gh_mirrors/hi/hindsight-experience-replay

项目概述

本教程旨在指导您如何理解和使用 Hindsight Experience Replay (HER) 的开源实现,该技术由 Marcin Andrychowicz 等人提出,用于解决强化学习中稀疏奖励的难题。此项目可以从 GitHub 获得。我们将逐步解析其结构、关键文件以及配置方法,帮助您快速上手。


1. 项目目录结构及介绍

以下是对 Hindsight Experience Replay 开源项目基本目录结构的概览:

|- src/
   |- core/                  # 核心算法实现,包括HER逻辑
   |- envs/                  # 自定义环境或对现有环境的封装,用于实验
   |- models/                # 模型架构,用于策略和价值函数
   |- utils/                 # 辅助工具函数,如数据处理、日志记录等
|- scripts/                 # 启动脚本和实验运行命令
|- config.py                # 全局配置文件,包含超参数等设置
|- requirements.txt         # 项目依赖清单
|- README.md                # 项目说明文件
  • src/core: 包含了HER的核心机制,是理解并修改算法逻辑的重点。
  • envs: 提供定制化的环境或对OpenAI Gym环境的适配,以便应用HER。
  • models: 定义神经网络模型,通常包括Actor-Critic结构或者特定于任务的模型。
  • utils: 收集了各种辅助功能,从数据预处理到日志记录,是实现细节的重要部分。
  • scripts: 存放着运行实验的脚本,您可以通过这些脚本来启动训练过程。
  • config.py: 配置文件,设定学习率、环境名称、训练步数等关键参数。

2. 项目的启动文件介绍

scripts 目录下,您会找到用于执行训练和测试的主要脚本。典型的启动文件可能命名为 train.py 或特定任务的脚本。一个简单的启动流程如下:

python scripts/train.py --env-name 'YOUR_ENV_NAME' --algo her

注解:

  • --env-name: 指定要训练的环境名称,确保它与 envs 中的环境相匹配。
  • --algo her: 指明使用的是Hindsight Experience Replay算法。

3. 项目的配置文件介绍

  • config.py: 这个文件集中管理所有重要配置项。示例配置项包括:
agent_config = {
    'algorithm': 'her',       # 确认使用的算法为HER
    'discount': 0.99,          # 折扣因子
    'buffer_size': 100000,     # 经验回放缓冲区大小
    'batch_size': 256,        # 更新时使用的批量大小
    # ...更多关于学习率、更新频率等其他参数
}

environment_config = { 
    'name': 'Pusher2D-v0',    # 实验环境名,需与实际环境一致
    # 可能还包括目标状态范围、观测空间设置等
}

# 还可以包括优化器类型,探索噪声设置等

配置文件允许您根据需要调整实验条件,比如更换环境、调整学习速率、更改经验回放的大小等,以适应不同的研究需求和实验场景。


通过遵循上述指南,您可以有效地搭建和调整Hindsight Experience Replay的实验环境,深入研究并应用这一强化学习领域的关键技术。记得在进行任何修改前仔细阅读代码注释和原有配置,以确保正确理解每个组件的作用。

hindsight-experience-replayThis is the pytorch implementation of Hindsight Experience Replay (HER) - Experiment on all fetch robotic environments.项目地址:https://gitcode.com/gh_mirrors/hi/hindsight-experience-replay

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郝菡玮Echo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值