Google Cloud Vertex AI Samples 项目教程
1. 项目的目录结构及介绍
Google Cloud Vertex AI Samples 项目的目录结构旨在展示如何使用 Google Cloud Vertex AI 进行机器学习和生成 AI 工作流程的开发和管理。以下是项目的主要目录结构及其介绍:
- README.md: 项目介绍和使用说明。
- Code of conduct: 行为准则。
- Apache-2.0 license: 项目使用的开源许可证。
- Security: 安全政策。
- notebooks/: 包含 Jupyter Notebook 示例,展示如何使用 Vertex AI 进行各种机器学习任务。
- code-samples/: 包含代码示例,展示如何使用 Vertex AI 进行模型训练、部署等操作。
- sample-apps/: 包含示例应用程序,展示如何在实际应用中使用 Vertex AI。
- model-registry/: 用于创建和注册模型的示例。
- Explainable AI/: 使用 Vertex Explainable AI 进行模型解释的示例。
- ml_metadata/: 记录和查询机器学习系统元数据的示例。
- Pipelines/: 使用
Vertex AI Pipelines
和Google Cloud Pipeline Components
构建、调整或部署自定义模型的示例。
2. 项目的启动文件介绍
项目的启动文件通常位于 notebooks/
或 code-samples/
目录下,具体取决于示例的类型。以下是一些常见的启动文件及其介绍:
- notebooks/example.ipynb: 一个 Jupyter Notebook 示例,展示如何使用 Vertex AI 进行模型训练和预测。
- code-samples/train_model.py: 一个 Python 脚本示例,展示如何使用 Vertex AI 进行自定义模型训练。
- code-samples/deploy_model.py: 一个 Python 脚本示例,展示如何使用 Vertex AI 进行模型部署。
3. 项目的配置文件介绍
项目的配置文件通常用于设置环境变量、API 密钥和其他必要的配置参数。以下是一些常见的配置文件及其介绍:
- .env: 包含环境变量和 API 密钥的配置文件,用于设置项目运行所需的环境。
- config.yaml: 包含项目配置参数的 YAML 文件,用于设置模型训练和部署的参数。
- requirements.txt: 包含项目依赖库的列表,用于安装项目运行所需的 Python 库。
以上是 Google Cloud Vertex AI Samples 项目的基本教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些信息能帮助你更好地理解和使用该项目。