使用Google Cloud Vertex AI搜索打造高效的RAG应用
在现代技术环境中,机器学习驱动的搜索服务日益成为企业和开发者的必备工具。Google Vertex AI Search结合了强大的检索功能和自然语言处理能力,是构建RAG(Retrieval-Augmented Generation)应用的理想选择。本篇文章将介绍如何使用Google Vertex AI Search和PaLM 2 for Chat创建一个智能的文档问答系统。
引言
RAG(Retrieval-Augmented Generation)技术通过检索相关文档增强生成模型的性能,特别适合需要精准回答问题的应用场景。结合Google Vertex AI Search和LangChain框架,我们可以快速实现一个强大的RAG应用。本篇文章旨在指导您完成环境设置、应用开发和部署。
主要内容
环境设置
在使用模板之前,确保已认证Vertex AI Search。参阅认证指南。您需要创建以下内容:
- 一个搜索应用
- 一个数据存储
- 一个合适的数据集(如Alphabet Earnings Reports)
将以下环境变量设置为您的Google Cloud项目相关信息:
export GOOGLE_CLOUD_PROJECT_ID=<your-google-cloud-project-id>
export DATA_STORE_ID=<your-data-store-id>
export MODEL_TYPE=<your-model-type>
安装LangChain CLI
使用以下命令安装LangChain CLI:
pip install -U langchain-cli
创建项目
使用以下命令创建一个新的LangChain项目:
langchain app new my-app --package rag-google-cloud-vertexai-search
或者在现有项目中添加此包:
langchain app add rag-google-cloud-vertexai-search
并在server.py
文件中添加以下代码:
from rag_google_cloud_vertexai_search.chain import chain as rag_google_cloud_vertexai_search_chain
add_routes(app, rag_google_cloud_vertexai_search_chain, path="/rag-google-cloud-vertexai-search")
可选配置:LangSmith
LangSmith能帮助跟踪、监控和调试LangChain应用。如无访问权限可跳过。
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>
启动LangServe
在项目目录中启动LangServe实例:
langchain serve
本地服务器将运行在http://localhost:8000
。您可以在http://127.0.0.1:8000/docs
查看所有模板,并在/playground
路径访问。
代码示例
以下代码展示了如何使用RemoteRunnable类访问部署的应用:
from langserve.client import RemoteRunnable
# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://localhost:8000/rag-google-cloud-vertexai-search")
常见问题和解决方案
网络访问限制
由于某些地区的网络限制,开发者可能需使用API代理服务来确保稳定访问。
数据存储配置错误
确保DATA_STORE_ID
的正确性,可以在Vertex AI Search的数据存储详情页面找到。
总结和进一步学习资源
通过本文中所述步骤,您可以轻松创建和部署一个基于Google Vertex AI Search的RAG应用。继续学习相关技术的资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—