使用Google Cloud Vertex AI搜索打造高效的RAG应用

使用Google Cloud Vertex AI搜索打造高效的RAG应用

在现代技术环境中,机器学习驱动的搜索服务日益成为企业和开发者的必备工具。Google Vertex AI Search结合了强大的检索功能和自然语言处理能力,是构建RAG(Retrieval-Augmented Generation)应用的理想选择。本篇文章将介绍如何使用Google Vertex AI Search和PaLM 2 for Chat创建一个智能的文档问答系统。

引言

RAG(Retrieval-Augmented Generation)技术通过检索相关文档增强生成模型的性能,特别适合需要精准回答问题的应用场景。结合Google Vertex AI Search和LangChain框架,我们可以快速实现一个强大的RAG应用。本篇文章旨在指导您完成环境设置、应用开发和部署。

主要内容

环境设置

在使用模板之前,确保已认证Vertex AI Search。参阅认证指南。您需要创建以下内容:

  • 一个搜索应用
  • 一个数据存储
  • 一个合适的数据集(如Alphabet Earnings Reports)

将以下环境变量设置为您的Google Cloud项目相关信息:

export GOOGLE_CLOUD_PROJECT_ID=<your-google-cloud-project-id>
export DATA_STORE_ID=<your-data-store-id>
export MODEL_TYPE=<your-model-type>

安装LangChain CLI

使用以下命令安装LangChain CLI:

pip install -U langchain-cli

创建项目

使用以下命令创建一个新的LangChain项目:

langchain app new my-app --package rag-google-cloud-vertexai-search

或者在现有项目中添加此包:

langchain app add rag-google-cloud-vertexai-search

并在server.py文件中添加以下代码:

from rag_google_cloud_vertexai_search.chain import chain as rag_google_cloud_vertexai_search_chain

add_routes(app, rag_google_cloud_vertexai_search_chain, path="/rag-google-cloud-vertexai-search")

可选配置:LangSmith

LangSmith能帮助跟踪、监控和调试LangChain应用。如无访问权限可跳过。

export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>

启动LangServe

在项目目录中启动LangServe实例:

langchain serve

本地服务器将运行在http://localhost:8000。您可以在http://127.0.0.1:8000/docs查看所有模板,并在/playground路径访问。

代码示例

以下代码展示了如何使用RemoteRunnable类访问部署的应用:

from langserve.client import RemoteRunnable

# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://localhost:8000/rag-google-cloud-vertexai-search")

常见问题和解决方案

网络访问限制

由于某些地区的网络限制,开发者可能需使用API代理服务来确保稳定访问。

数据存储配置错误

确保DATA_STORE_ID的正确性,可以在Vertex AI Search的数据存储详情页面找到。

总结和进一步学习资源

通过本文中所述步骤,您可以轻松创建和部署一个基于Google Vertex AI Search的RAG应用。继续学习相关技术的资源:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值