STU-Net 开源项目使用教程

STU-Net 开源项目使用教程

STU-NetThe largest pre-trained medical image segmentation model (1.4B parameters) based on the largest public dataset (>100k annotations), up until April 2023.项目地址:https://gitcode.com/gh_mirrors/st/STU-Net

1. 项目的目录结构及介绍

STU-Net 项目的目录结构如下:

STU-Net/
├── assets/
│   └── ...
├── LICENSE
├── README.md
├── run_finetuning.py
├── config/
│   └── ...
└── ...
  • assets/: 包含项目相关的资源文件。
  • LICENSE: 项目的许可证文件。
  • README.md: 项目的主文档,包含项目介绍、使用说明等。
  • run_finetuning.py: 项目的启动文件之一,用于微调模型。
  • config/: 包含项目的配置文件。

2. 项目的启动文件介绍

run_finetuning.py

run_finetuning.py 是 STU-Net 项目的主要启动文件之一,用于在下游任务上进行模型微调。使用方法如下:

python run_finetuning.py 3d_fullres STUNetTrainer_base_ft TASKID FOLD -pretrained_weights MODEL
  • 3d_fullres: 表示三维全分辨率模式。
  • STUNetTrainer_base_ft: 表示使用的训练器。
  • TASKID: 任务ID。
  • FOLD: 交叉验证的折数。
  • -pretrained_weights MODEL: 预训练模型的路径。

3. 项目的配置文件介绍

config/ 目录

config/ 目录包含项目的各种配置文件,例如模型参数、训练参数等。具体文件如下:

  • config.yaml: 主配置文件,包含模型和训练的基本参数。
  • dataset_config.yaml: 数据集配置文件,包含数据集路径、预处理参数等。
  • trainer_config.yaml: 训练器配置文件,包含训练过程中的参数设置。

每个配置文件的具体内容可以根据项目需求进行调整。


以上是 STU-Net 开源项目的基本使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些信息能帮助你更好地理解和使用 STU-Net 项目。

STU-NetThe largest pre-trained medical image segmentation model (1.4B parameters) based on the largest public dataset (>100k annotations), up until April 2023.项目地址:https://gitcode.com/gh_mirrors/st/STU-Net

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

滕骅照Fitzgerald

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值