STU-Net 开源项目使用教程
1. 项目的目录结构及介绍
STU-Net 项目的目录结构如下:
STU-Net/
├── assets/
│ └── ...
├── LICENSE
├── README.md
├── run_finetuning.py
├── config/
│ └── ...
└── ...
assets/
: 包含项目相关的资源文件。LICENSE
: 项目的许可证文件。README.md
: 项目的主文档,包含项目介绍、使用说明等。run_finetuning.py
: 项目的启动文件之一,用于微调模型。config/
: 包含项目的配置文件。
2. 项目的启动文件介绍
run_finetuning.py
run_finetuning.py
是 STU-Net 项目的主要启动文件之一,用于在下游任务上进行模型微调。使用方法如下:
python run_finetuning.py 3d_fullres STUNetTrainer_base_ft TASKID FOLD -pretrained_weights MODEL
3d_fullres
: 表示三维全分辨率模式。STUNetTrainer_base_ft
: 表示使用的训练器。TASKID
: 任务ID。FOLD
: 交叉验证的折数。-pretrained_weights MODEL
: 预训练模型的路径。
3. 项目的配置文件介绍
config/
目录
config/
目录包含项目的各种配置文件,例如模型参数、训练参数等。具体文件如下:
config.yaml
: 主配置文件,包含模型和训练的基本参数。dataset_config.yaml
: 数据集配置文件,包含数据集路径、预处理参数等。trainer_config.yaml
: 训练器配置文件,包含训练过程中的参数设置。
每个配置文件的具体内容可以根据项目需求进行调整。
以上是 STU-Net 开源项目的基本使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些信息能帮助你更好地理解和使用 STU-Net 项目。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考