TensorFlow 入门指南:Eager Execution 模式详解

TensorFlow 入门指南:Eager Execution 模式详解

training-data-analyst Labs and demos for courses for GCP Training (http://cloud.google.com/training). training-data-analyst 项目地址: https://gitcode.com/gh_mirrors/tr/training-data-analyst

概述

TensorFlow 作为当前最流行的深度学习框架之一,提供了两种主要的执行模式:Eager Execution(即时执行)和 Graph Execution(图执行)。本文将重点介绍 Eager Execution 模式,通过实际代码示例展示其核心特性和使用方法。

Eager Execution 与 Graph Execution 对比

Eager Execution 特点

  • 即时计算:操作立即执行并返回具体值
  • 直观调试:更接近传统 Python 编程体验
  • 原型开发友好:减少样板代码,提高开发效率

Graph Execution 特点

  • 延迟计算:构建计算图,在 Session 中执行
  • 性能优化:适合生产环境和分布式训练
  • 静态图优势:支持更多优化可能性

Eager Execution 基础操作

启用 Eager 模式

import tensorflow as tf
tf.enable_eager_execution()

张量基本运算

a = tf.constant([5, 3, 8], dtype=tf.int32)
b = tf.constant([3, -1, 2], dtype=tf.int32)
c = tf.add(a, b)  # 或使用运算符重载 c = a + b
print(c)

与 NumPy 的互操作性

TensorFlow 操作可以接受多种输入类型:

  • Python 原生类型(列表、元组等)
  • NumPy 数组
  • TensorFlow 张量
import numpy as np

# 不同类型输入示例
a_py = [1,2]  # Python 列表
a_np = np.array([1,2])  # NumPy 数组
a_tf = tf.constant([1,2])  # TF 张量

# 张量转 NumPy 数组
a_tf.numpy()

实战:线性回归实现

数据集准备

我们模拟线性关系 y = 2x + 10:

X = tf.constant([1,2,3,4,5,6,7,8,9,10], dtype=tf.float32)
Y = 2 * X + 10

损失函数定义

使用均方误差(MSE)作为损失函数:

def loss_mse(X, Y, w0, w1):
    Y_hat = w0 * X + w1
    return tf.reduce_mean((Y_hat - Y)**2)

自动微分

TensorFlow 的自动微分功能简化了梯度计算:

grad_f = tf.contrib.eager.gradients_function(loss_mse, params=[2,3])

训练循环

STEPS = 1000
LEARNING_RATE = .02

# 初始化权重
w0 = tf.constant(0.0)
w1 = tf.constant(0.0)

for step in range(STEPS):
    # 计算梯度
    d_w0, d_w1 = grad_f(X, Y, w0, w1)
    
    # 更新权重
    w0 -= d_w0 * LEARNING_RATE
    w1 -= d_w1 * LEARNING_RATE
    
    # 定期打印损失
    if step % 100 == 0:
        print(f"STEP: {step} MSE: {loss_mse(X, Y, w0, w1)}")

# 输出最终结果
print(f"w0: {w0.numpy():.4f}, w1: {w1.numpy():.4f}")

进阶:非线性函数拟合

我们可以扩展上述方法拟合更复杂的非线性函数,如 y = xe^{-x^2}:

X = tf.constant(np.linspace(0,2,1000), dtype=tf.float32)
Y = X * np.exp(-X**2)

# 构建多项式特征
def make_features(X):
    features = [X, tf.ones_like(X), tf.square(X), 
               tf.sqrt(X), tf.exp(X)]
    return tf.stack(features, axis=1)

# 修改预测和损失函数
def predict(X, W):
    return tf.squeeze(tf.matmul(X, W), axis=-1)

def loss_mse(X, Y, W):
    return tf.reduce_mean((predict(X, W) - Y)**2)

# 训练过程类似线性回归案例

总结

Eager Execution 模式为 TensorFlow 带来了更直观的开发体验,特别适合:

  • 快速原型开发
  • 教学和实验
  • 调试复杂模型

通过本文的示例,我们展示了如何利用 Eager 模式实现从简单线性回归到非线性函数拟合的完整流程。这种模式降低了 TensorFlow 的学习门槛,让开发者能够更专注于模型本身而非框架细节。

training-data-analyst Labs and demos for courses for GCP Training (http://cloud.google.com/training). training-data-analyst 项目地址: https://gitcode.com/gh_mirrors/tr/training-data-analyst

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

滕骅照Fitzgerald

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值