hume-python-sdk:轻松集成Hume API,提升Python应用智能

hume-python-sdk:轻松集成Hume API,提升Python应用智能

hume-python-sdk Python client for Hume AI APIs hume-python-sdk 项目地址: https://gitcode.com/gh_mirrors/hu/hume-python-sdk

项目介绍

hume-python-sdk 是一个开源的Python软件开发包(SDK),它允许开发者直接在Python应用中集成Hume提供的API服务。Hume AI 是一家专注于情感分析和语音识别的公司,其API能够为应用程序提供情感理解、语音交互等功能。通过hume-python-sdk,开发者可以轻松利用Hume AI的强大功能,为用户提供更加智能和个性化的体验。

项目技术分析

hume-python-sdk 设计上注重易用性和灵活性,它支持多种Python版本和操作系统,包括最新的Python 3.9到3.12版本。该SDK使用了异步编程模型,提供了AsyncHumeClient,使得API调用不会阻塞程序的主执行流程,这对于需要高并发处理的应用尤为重要。

此外,hume-python-sdk 在版本0.7.0以上进行了重大架构更改,引入了更安全的类型检查和更细粒度的配置选项,同时保留了向后兼容的旧功能。

项目及技术应用场景

hume-python-sdk 主要应用于以下场景:

  1. 情感分析:利用Hume的Empathic Voice Interface API,开发者可以分析用户的语音情感,从而提供更符合用户情绪的响应。
  2. 语音识别与交互:通过Expression Measurement API,可以实现对用户语音的识别和交互,适用于智能助手、客户服务机器人等场景。
  3. 自定义模型:开发者可以使用Hume提供的自定义模型API,为特定需求训练和部署机器学习模型。

项目特点

  1. 易于集成:hume-python-sdk 提供了简洁的API接口,使得集成过程变得简单快捷。
  2. 支持异步调用:通过异步客户端AsyncHumeClient,可以在不阻塞主线程的情况下进行API调用。
  3. 类型安全与配置灵活:改进的类型安全性和细粒度配置选项,让开发者能够更安全、更灵活地使用SDK。
  4. 向后兼容:即使在新版本中进行了架构更改,旧版本的功能仍然被保留,确保了平滑的迁移过程。
  5. 自动重试与超时设置:SDK内置了自动重试机制和超时设置,提高了API调用的稳定性和可靠性。

以下是详细的hume-python-sdk功能介绍:

异步客户端

import asyncio
from hume.client import AsyncHumeClient

client = AsyncHumeClient(api_key="YOUR_API_KEY")

async def main() -> None:
    await client.empathic_voice.configs.list_configs()

asyncio.run(main())

文件操作

使用异步流式写入文件在Python中可能会有些复杂,但aiofiles库可以简化这一过程。

import aiofiles
from hume import AsyncHumeClient

client = AsyncHumeClient()
async with aiofiles.open('artifacts.zip', mode='wb') as file:
    async for chunk in client.expression_measurement.batch.get_job_artifacts(id="my-job-id"):
        await file.write(chunk)

命名空间

SDK中的API按照功能进行了命名空间划分,方便开发者使用。

from hume.client import HumeClient

client = HumeClient(api_key="YOUR_API_KEY")

client.expression_measurement.  # Expression Measurement相关API
client.empathic_voice.            # Empathic Voice相关API

异常处理

所有SDK抛出的错误都将继承自ApiError类,便于错误处理。

from hume.client import HumeClient

try:
    client.expression_measurement.batch.get_job_predictions(...)
except hume.core.ApiError as e:
    print(e.status_code)
    print(e.body)

分页

分页请求将返回一个SyncPagerAsyncPager,可以用来迭代获取数据。

import hume.client

client = HumeClient(api_key="YOUR_API_KEY")

for tool in client.empathic_voice.tools.list_tools():
    print(tool)

WebSockets

SDK提供了WebSocket客户端,用于与EVI API和Expression Measurement API交互。

from hume import StreamDataModels

client = AsyncHumeClient(api_key=os.getenv("HUME_API_KEY"))

async with client.expression_measurement.stream.connect(
    options={"config": StreamDataModels(...)}
) as hume_socket:
    print(await hume_socket.get_job_details())

高级功能

重试机制

SDK内置了自动重试机制,支持指数退避策略。

from hume.client import HumeClient
from hume.core import RequestOptions

client = HumeClient(...)

# 覆盖特定方法的重试设置
client.expression_measurement.batch.get_job_predictions(...,
    request_options=RequestOptions(max_retries=5)
)
超时设置

可以配置请求超时时间。

from hume.client import HumeClient
from hume.core import RequestOptions

client = HumeClient(
    # 所有超时设置为20秒
    timeout=20.0,
)

# 覆盖特定方法的超时设置
client.expression_measurement.batch.get_job_predictions(...,
    request_options=RequestOptions(timeout_in_seconds=20)
)
自定义HTTP客户端

可以覆盖HTTP客户端以进行自定义配置。

import httpx
from hume.client import HumeClient

client = HumeClient(
    http_client=httpx.Client(
        proxies="http://my.test.proxy.example.com",
        transport=httpx.HTTPTransport(local_address="0.0.0.0"),
    ),
)

hume-python-sdk 是一款功能强大、易于集成的Python SDK,适用于希望提升应用智能水平的开发者。通过简单的API调用,您可以为您的应用程序添加情感分析和语音识别功能,为用户提供更加智能和个性化的体验。立即尝试hume-python-sdk,开启智能应用的新篇章!

hume-python-sdk Python client for Hume AI APIs hume-python-sdk 项目地址: https://gitcode.com/gh_mirrors/hu/hume-python-sdk

内容概要:《2025年机器身份安全现状报告》揭示了机器身份安全在全球企业中的重要性和面临的挑战。随着云计算、AI和微服务的发展,机器身份数量已远超人类身份,成为现代网络安全的核心。然而,管理这些身份变得越来越复杂,许多组织缺乏统一的管理策略。77%的安全领导者认为每个未发现的机器身份都是潜在的风险点,50%的组织在过去一年中经历了与机器身份相关的安全事件,导致应用发布延迟、客户体验受损和数据泄露等问题。AI的兴起进一步加剧了这一问题,81%的安全领导者认为机器身份将是保护AI未来的关键。此外,证书相关故障频发,自动化管理仍不足,量子计算的威胁也逐渐显现。面对这些挑战,组织需要建立全面的机器身份安全计划,重点加强自动化、可见性和加密灵活性。 适合人群:从事信息安全、IT管理和技术架构规划的专业人士,尤其是关注机器身份管理和云原生环境安全的从业者。 使用场景及目标:①理解机器身份在现代企业安全架构中的关键作用;②识别当前机器身份管理中存在的主要风险和挑战;③探讨如何通过自动化、可见性和加密灵活性来提升机器身份安全管理的有效性;④为制定或优化企业机器身份安全策略提供参考。 其他说明:此报告基于对全球1,200名安全领导者的调查,强调了机器身份安全的重要性及其在未来几年内可能面临的复杂变化。报告呼吁各组织应重视并积极应对这些挑战,以确保业务连续性和数据安全。
基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库),含有代码注释,新手也可看懂,个人手打98分项目,导师非常认可的高分项目,毕业设计、期末大作业和课程设计高分必看,下载下来,简单部署,就可以使用。该项目可以直接作为毕设、期末大作业使用,代码都在里面,系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值,项目都经过严格调试,确保可以运行! 基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设计与实现(含程序源码和数据库)基于python+django校园智能点餐管理系统设
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万宁谨Magnus

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值