- 博客(339)
- 资源 (22)
- 收藏
- 关注
原创 Python之Pydantic基础教程
在Pydantic中,一个schema是一个继承自BaseModel的类,它定义了数据模型的结构和类型。id: intname: str可以定义嵌套的schema来表示复杂的数据结构。
2024-10-18 14:23:11 212
原创 Python各种符号的基本功能
Python 是一种动态、解释型的高级脚本语言,它支持多种编程范式,包括面向对象、命令式、函数式和过程式编程。在 Python 中,符号(或称为操作符)用于执行各种操作。同时,数字前加个.表示将其转成浮点数类型,比如。
2024-10-18 11:58:16 176
原创 Python中的`__init__`方法和`self`参数的作用
_init__方法和self参数是Python面向对象编程中的基础概念。__init__用于初始化新创建的对象,而self用于访问对象的属性和方法。理解这两个概念对于编写有效的Python类至关重要。希望这个教程能帮助你理解__init__和self在Python中的作用!如果你有任何问题,随时问我。
2024-10-17 19:39:57 170
原创 用AI模拟某名人的说话风格和行为风格,有点震撼到我了
首先算出“某某和巴菲特共进过晚餐的名人”的7万多个标签,然后抽去频率出现最高的1000个标签作为其人设,然后算出了此人的120万级的知识图谱,形成某某人大脑🧠的下AI模拟。和这个模拟AI对话,其回复内容和思考方式,竟然真的有“某某名人”本人的气质。把我自己给震撼到了。
2024-10-16 18:42:45 146
原创 以neo4j知识图谱数据库export、import功能为例,说明大模型kimi.ai帮程序员并不靠谱啊
实际正确的导入命令(sunyucheng.neo4j.rawbinary.dump是当前目录一个文件夹名称)实际正确的导入命令(sunyucheng.neo4j.rawbinary.dump是当前目录一个文件夹名称)经过实际验证,不能运行,错误的。一、kimi.ai解决方案。
2024-10-16 17:53:47 164
原创 自然语言处理中的几个专业术语CWS POS NER DC SA SPM NLI解释
这些都是自然语言处理(NLP)领域的重要任务,每个任务都有其特定的应用场景和挑战。
2024-10-06 21:02:28 810
原创 自然语言处理:文本分类与情感分析
自然语言处理(NLP)是人工智能和语言学领域的一个分支,它致力于使计算机能够理解和处理人类语言。文本分类和情感分析是NLP中的两个常见任务。
2024-09-29 17:16:59 466
原创 图像识别:从卷积神经网络到实际应用
图像识别是深度学习中的一个重要应用领域,卷积神经网络(Convolutional Neural Networks, CNNs)在这项任务中取得了巨大的成功。
2024-09-29 17:10:16 358
原创 一个简单的基于PyTorch的多层感知器(MLP)神经网络
构建一个简单的神经网络使用PyTorch同样简单。以下是使用PyTorch构建一个多层感知器(MLP)进行分类任务的步骤,我们仍然以鸢尾花(Iris)数据集为例:2. 加载和预处理数据3. 构建模型4. 定义损失函数和优化器5. 训练模型6. 评估模型以上代码展示了如何使用PyTorch构建一个简单的神经网络,并在鸢尾花数据集上进行训练和评估。请注意,为了运行此代码,您需要安装PyTorch和相关库。
2024-09-29 17:05:03 344
原创 构建一个简单的基于TensorFlow的多层感知器(MLP)神经网络(用于分类任务)
构建一个简单的神经网络使用TensorFlow可以很快地完成。
2024-09-29 17:00:04 155
原创 深度学习模型的可解释性与挑战
尽管在提高深度学习模型的可解释性方面取得了进展,但仍面临许多挑战,如模型的固有复杂性、在保持高性能的同时提高可解释性之间的权衡,以及开发有效的技术来应对这些挑战。:有多种方法可以提高深度学习模型的可解释性,包括使用可解释的模型(如决策树)、模型特定的解释方法、模型不可知的解释方法和因果可解释性方法。:为了提高模型的可解释性,研究人员尝试通过模型压缩技术来减小模型的大小,使其更适合在资源受限的设备上使用,同时尽量保持模型的精度。:评估模型可解释性的性能是至关重要的,以确保它们提供有意义和可解释的解释。
2024-09-28 18:00:10 349
原创 循环神经网络(RNN)原理 及 优势
在RNN中,相同的权重被用于序列中的每个元素,这减少了模型的参数数量,使得模型更加高效。RNN通过这种方式可以处理任意长度的序列,并且能够捕捉序列中的长期依赖关系。:RNN能够记住之前处理的信息,这对于理解序列数据中的长期依赖关系非常重要。:RNN可以动态地处理不同长度的序列,这使得它能够灵活地处理各种长度的数据。:RNN可以处理不同长度的输入序列,这在处理文本或语音数据时非常有用。:RNN能够处理语音信号的时间序列数据,识别出语音中的模式和音素。:RNN可以用于生成音乐、分析音乐风格或者进行音频分类。
2024-09-28 17:57:13 419
原创 卷积神经网络(CNN)基本介绍 及 CNN在图像识别中应用卷积操作的过程
"Convolutional"这个词来源于数学中的卷积(Convolution)操作。在数学和信号处理领域,卷积是一种数学运算,它结合了两个函数以产生第三个函数,这个函数表达了一个函数如何通过另一个函数的“形状”来改变。在卷积神经网络(CNN)的上下文中,"Convolutional"指的是网络中的一种操作,即卷积层所做的操作。卷积层使用一组称为卷积核(或滤波器)的小矩阵来提取输入数据(如图像)的特征。
2024-09-28 17:51:48 705
原创 一个简单的神经网络示意表示
包含多个神经元,每个神经元与输入层的每个神经元相连。:可以是Sigmoid、ReLU等,用于引入非线性。:包含多个神经元,每个神经元接收一个输入特征。:与隐藏层1类似,但是连接的是隐藏层1的输出。:通过损失函数计算梯度,然后更新权重和偏置。:包含一个或多个神经元,用于输出预测结果。:用于计算预测输出与真实标签之间的差异。:与激活函数1类似。
2024-09-28 17:45:11 190
原创 一个简单的神经网络示意表示
包含多个神经元,每个神经元与输入层的每个神经元相连。:可以是Sigmoid、ReLU等,用于引入非线性。:包含多个神经元,每个神经元接收一个输入特征。:与隐藏层1类似,但是连接的是隐藏层1的输出。:通过损失函数计算梯度,然后更新权重和偏置。:包含一个或多个神经元,用于输出预测结果。:用于计算预测输出与真实标签之间的差异。:与激活函数1类似。
2024-09-28 17:38:01 120
原创 神经网络:基本构成与工作原理
神经网络是一种受生物神经网络启发的计算模型,它由一系列相互连接的节点(或称为神经元)组成,这些节点能够对输入数据进行处理,并通过学习调整它们之间的连接权重来改进其输出。
2024-09-28 17:36:09 156
原创 召回率、精确率、F1值等专业术语含义
这些指标的选择取决于具体的应用场景和业务需求。例如,在医疗诊断中,可能更重视召回率,以确保所有可能的病例都被检测到。而在垃圾邮件检测中,可能更重视精确率,以减少误杀正常邮件的情况。在构建分类模型时,模型需要从数据中学习区分正样本和负样本的特征。在机器学习和数据挖掘领域,评估指标是用来衡量模型性能的重要工具。使用这些值,我们可以计算出模型的召回率、精确率、F1值等指标。
2024-09-28 17:31:02 424
原创 一个机器学习模型具体的编程例子:鸢尾花(iris)识别分类
数据集下载地址(一此常见的数据科学 Python 库,都集成了鸢尾花(iris)数据集)数据集详情鸢尾花数据集共收集了三类鸢尾花,即Setosa鸢尾花、Versicolour鸢尾花和Virginica鸢尾花,每一类鸢尾花收集了50条样本记录,共计150条。数据集包括4个属性,分别为花萼的长、花萼的宽、花瓣的长和花瓣的宽。对花瓣我们可能比较熟悉,花萼是什么呢?花萼是花冠外面的绿色被叶,在花尚未开放时,保护着花蕾。
2024-09-28 13:48:51 453
原创 机器学习之深度学习介绍
深度学习(Deep Learning)是机器学习的一个子领域,它基于人工神经网络的学习算法,特别是那些具有多层结构的网络,即所谓的“深度”神经网络。深度学习在图像识别、语音识别、自然语言处理、医学图像分析等多个领域都取得了显著的成就。
2024-09-28 13:25:01 384
原创 强化学习在自动驾驶汽车中的应用具体是如何实现的?
强化学习在自动驾驶中的应用仍然面临挑战,如样本效率、模拟到现实世界的迁移、以及确保安全性等。:奖励函数用于评价一个动作的好坏,它根据驾驶的安全性、效率、舒适性等来设计。强化学习在自动驾驶汽车中的应用主要涉及使用智能体(自动驾驶汽车)通过与环境的交互来学习最优的驾驶策略。:智能体在模拟环境或真实道路上进行训练,通过不断尝试和错误来优化其策略。:自动驾驶汽车所处的道路环境,包括交通信号、其他车辆、行人、道路状况等,被模拟为强化学习中的环境。:在自动驾驶的应用中,动作可能包括加速、减速、转向、变道等驾驶操作。
2024-09-28 13:17:31 325
原创 强化学习(Reinforcement Learning, RL)
强化学习(Reinforcement Learning, RL)是机器学习的一个重要分支,它通过与环境的交互来学习决策策略,以最大化长期累积奖励。在强化学习中,智能体(agent)通过执行一系列动作来影响环境,从而获得反馈信号,即奖励(reward)。这种学习机制模仿了生物体在自然界中的学习过程,因此具有很强的现实意义和应用前景。
2024-09-28 13:16:01 259
原创 机器学习中两种常见的数据分析技术:聚类(Clustering)和分类(Classification)区别
聚类(Clustering)和分类(Classification)是机器学习中两种常见的数据分析技术,它们在目标和方法上有所不同。
2024-09-28 13:14:01 418
原创 Linux上用shell命令将文件上传百度云盘或从百度云盘下载
将byinfo命令返回的url{截图中的A}粘贴进入浏览器,浏览器将返回一个字符串{截图中的B},并将{截图中的B}粘贴到命令行,回车。此时,登录百度网盘,你看到百度网盘下图目录“讲文本文件test.txt上传到百度网盘。”下,有了test.txt这个文件。获取百度授权请求的URL。我的应用数据/bypy/
2024-09-27 18:33:40 335
原创 nacos安全配置
配置文件路径:nacos/conf/application.properties其中nacos.core.auth.enabled=true是为了让客户端(比如java、python等访问注册到nacos时,需要授权)这样其他代码端注册nacos就需要用户名授权了,比如spring cloud的java代码需要如下授权,注意是nacos的用户名+密码为了http接口方式访问nacos服务(无需在界面http://****:8848/nacos/#/login登录,即可访问nacos的数据,比如服
2024-09-26 12:15:02 225
原创 docker 停止异常
运行如下命令(-1表示除了kill本身进程外的其他所有进程)再执行 docker stop则正常。首先进入docker的bash。
2024-09-21 14:46:18 165
翻译 为什么我的汗水闻起来像氨水?(发挥程序员的精神,由于最近每次跑10公里,衣服汗液湿透后都能闻到氨气味,必须研究清楚!)
2005 年的一项研究发现,虽然汗液中的氨含量在运动期间显著增加,但运动后 24 小时内汗液中的氨含量会降低,并在 72 小时后保持较低水平。根据美国国立卫生研究院的说法,患有三甲胺尿症的人可能遗传了一种有缺陷的基因,这意味着身体无法正确分解 TMA。2007 年的一项研究发现,随着人们运动强度的增加,汗液中的氨含量会增加。顶泌腺产生的汗液会有气味。2006 年的一项较早的研究发现,吃肉的参与者的体味在其他人看来不如吃非肉的参与者的体味有吸引力。根据 2013 年的一项研究,在极少数情况下,它会感染阴毛。
2024-08-07 19:40:56 68
原创 用于可视化 Neo4j 图形数据库的 15 种工具
基于图形的搜索是 Hume 的主要功能,它创建了一个图形搜索和探索齐头并进的工作流程。该工具由 yWorks(广泛使用的 yFiles JS 库背后的公司)构建,旨在展示 yWorks 框架对图形数据的功能。阅读完后,您应该对图形可视化领域有一个大致的了解,并且(希望)找到适合您可视化需求的工具。对于那些希望通过简单直观的界面开始图形探索的人来说,yWorks 浏览器是一个很好的选择,但与(付费)企业产品相比,它的选项有限。所有可视化工具包都是为特定目的而构建的,因此您必须确保工具的用途符合您的需求。
2024-08-05 13:23:57 1981
原创 Leiden 算法(neo4j)
同一簇的节点之间的关系成为自关系,与其他簇的节点的关系连接到簇代表。该算法将节点分成不相交的社区,以便最大化每个社区的模块度得分。模块度量化了将节点分配给社区的质量,即与随机网络中的节点连接程度相比,社区中节点的连接密度如何。模式,并产生了一个重要的副作用:将每个节点的社区 ID 作为属性写入 Neo4j 数据库。Leiden 算法是一种分层聚类算法,通过贪婪地优化模块性,将社区递归合并为单个节点,并在压缩图中重复该过程。模式,但有一个重要的副作用:使用包含该节点社区 ID 的新节点属性更新命名图。
2024-08-04 16:11:52 1477
原创 ubuntu 安装python3.12
如果您使用 APT 包管理器安装了 Python 3.12,则默认情况下不会安装 PIP。在 Ubuntu 22.04 操作系统上安装 Python 3.12 的另一种方法是从源代码构建它。这使得在 Ubuntu 上安装 Python 变得容易,并能够接收持续的更新、错误修复和安全更新。使用 APT 在 Ubuntu 22.04 上安装 Python 3.12 非常容易,大力称赞。构建过程完成后,运行以下命令在 Ubuntu 22.04 系统上完成 Python 安装。
2024-08-04 13:32:04 2141
原创 GraphRAG 介绍
GraphRAG 是一种结构化的、分层的检索增强生成 (RAG) 方法,不同于使用纯文本片段的简单语义搜索方法。GraphRAG 流程包括从原始文本中提取知识图谱、构建社区层次结构、为这些社区生成摘要,然后在执行基于 RAG 的任务时利用这些结构。解决方案加速器🚀开始使用 GraphRAG要开始使用 GraphRAG。如需深入了解主要子系统,请访问 IndexerQuery的文档页面。GraphRAG 与 Baseline RAG 🔍。
2024-08-04 13:23:17 1125
原创 neo4j 向量索引
请参阅您正在使用的特定向量嵌入模型的文档,因为它可能会建议对某些相似度函数的偏好。排列,其中最匹配的结果条目放在第一位(在本例中,相似度得分为,这是可以预料的,因为索引是使用此特定属性查询的)。映射是必需的,因为如果不设置向量维度和相似度函数,就无法创建向量索引。向量索引允许您根据节点或关系的嵌入属性与查询中指定的属性之间的相似性来检索节点或关系的邻域。向量索引是节点的单标签、单属性索引或关系的单关系类型、单属性索引。使用给定的相似度函数为具有给定向量维度的指定标签和属性创建向量索引。
2024-08-04 12:58:18 1115
原创 neo4j UNION
将两个或多个查询的结果合并为一个结果集,该结果集包含属于联合中任何查询的所有行。中使用,以在返回最终输出之前进一步处理组合结果。在使用 组合的所有查询中,列的数量和名称必须相同。的一部分引入的,使用它的功能与使用简单的 相同。) 将合并并从结果集中删除重复项。查询后返回的每个属性的出现次数。返回合并的结果,包括重复项。包含更新,则其中查询的顺序。使用 来合并两个查询的结果。返回合并的结果,没有重复。返回合并的结果,没有重复。要保留所有结果行,请使用。合并两个查询并保留重复项。合并两个查询并删除重复项。
2024-07-31 17:00:17 423
VC2005读取并显示单色16色256色24位位图实例与图片
2014-03-03
STL学习代码实例大全
2013-12-20
爱清净(软件开源) exe安装文件
2013-12-20
爱清净(开源)
2013-12-19
刘伟1..25章设计模式大集合
2013-12-13
gsoap_2.7.16.zip
2013-11-20
gsoap客户端Jax-ws服务端实例
2013-11-20
mssoap tookit 3.0
2013-11-19
打印(VS2005 C++)
2012-11-02
ImageMagick+Tricks+Web+Image+Effects+from+the+Command+Line+and+PHP.pdf
2012-09-02
ChatGLM-Tuning微调训练后,ChatGLM进对话,没有任何效果?
2023-04-23
TA创建的收藏夹 TA关注的收藏夹
TA关注的人