北京橙溪 www.enwing.com
码龄15年
关注
提问 私信
  • 博客:1,296,034
    社区:57
    问答:47
    动态:51
    视频:19
    1,296,208
    总访问量
  • 265
    原创
  • 3,190
    排名
  • 589
    粉丝
  • 学习成就

个人简介:https://www.enwing.com 想成为远程兼职研发人员吗?有项目要研发吗?来www.enwing.com

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 目前就职: 北京橙溪科技有限公司
  • 加入CSDN时间: 2009-07-19
博客简介:

hellochenlian的专栏

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    625
    当月
    32
个人成就
  • 获得688次点赞
  • 内容获得77次评论
  • 获得730次收藏
  • 代码片获得2,308次分享
创作历程
  • 85篇
    2024年
  • 22篇
    2023年
  • 6篇
    2021年
  • 1篇
    2020年
  • 4篇
    2019年
  • 1篇
    2018年
  • 60篇
    2015年
  • 109篇
    2014年
  • 54篇
    2013年
成就勋章
TA的专栏
  • C++
    8篇
  • DOS
    5篇
  • XML
    7篇
  • IE DOM、IE 内核(COM)
    14篇
  • 小语种
    1篇
  • Javascript、Js处理引擎
    3篇
  • windows操作系统
    3篇
  • Linux操作系统
    8篇
  • 设计模式
    1篇
  • MFC、VC
    3篇
  • COM/ATL
    1篇
  • PHP
    10篇
  • JSP
    1篇
  • 字符编码
    1篇
  • svn
    2篇
  • sybase
    1篇
  • 安全技术
    1篇
  • MSDN翻译
    1篇
  • 最崇拜的人
    2篇
  • ODBC
    1篇
  • myeclipse
    1篇
  • oracle
    7篇
  • gsoap、jax-ws框架java webservice
    1篇
  • winsowserver 2008 ie 安全
    1篇
  • android
    10篇
  • 免新闻打扰小工具
    1篇
  • java
    10篇
  • 算法(排序)
    1篇
  • 生活
    1篇
  • cocos2dx
    1篇
  • android布局
    2篇
  • http
    1篇
  • android jni
    1篇
  • mysql
    5篇
  • ubuntu
    6篇
  • IE基本运用
    1篇
  • shell
    20篇
  • Tomcat
    2篇
  • centos
    7篇
  • 正则表达式
    1篇
  • c
    1篇
  • android事件
    1篇
  • 手势
    1篇
  • chromium
    7篇
  • viausl studio 2010性能优化
    1篇
  • IE
    5篇
  • git
    5篇
  • libcurl
    2篇
  • google
    1篇
  • 搜索引擎
    1篇
  • unicode c++ cout printf local
    1篇
  • 免杀毒软件坑杀
    1篇
  • c++ url
    1篇
  • bat
    2篇
  • com
    1篇
  • chromium gyp
    1篇
  • chromium ninja
    1篇
  • shell linux command
    1篇
  • http ftp libcurl
    1篇
  • 健康
    1篇
  • php ftp mysql nginx linux
    2篇
  • php mysql
  • jsonp 跨域
    1篇
  • geoip php
    1篇
  • 7z linux
    1篇
  • regex
    1篇
  • nginx
    3篇
  • winDug
    1篇
  • html
    1篇
  • linux
    1篇
  • nginx+php
    1篇
  • ios object-c
    1篇
  • 技术合伙
    1篇
兴趣领域 设置
  • 后端
    架构
  • 人工智能
    机器学习tensorflow
  • 硬件开发
    材料工程
  • 服务器
    linux
  • 用户体验设计
    交互uisketch
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
搜TA的内容
搜索 取消

AI大佬给学生点意见

AI大佬给意见
原创
发布博客 14 小时前 ·
39 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

我们的性格模拟技术,真的很像他本人啊,遥遥领先。。

原创
发布博客 2024.11.06 ·
198 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

Python之Pydantic基础教程

在Pydantic中,一个schema是一个继承自BaseModel的类,它定义了数据模型的结构和类型。id: intname: str可以定义嵌套的schema来表示复杂的数据结构。
原创
发布博客 2024.11.05 ·
198 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

Python之Pydantic基础教程

在Pydantic中,一个schema是一个继承自BaseModel的类,它定义了数据模型的结构和类型。id: intname: str可以定义嵌套的schema来表示复杂的数据结构。
原创
发布博客 2024.10.18 ·
217 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

Python各种符号的基本功能

Python 是一种动态、解释型的高级脚本语言,它支持多种编程范式,包括面向对象、命令式、函数式和过程式编程。在 Python 中,符号(或称为操作符)用于执行各种操作。同时,数字前加个.表示将其转成浮点数类型,比如。
原创
发布博客 2024.10.18 ·
180 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

Python中的`__init__`方法和`self`参数的作用

_init__方法和self参数是Python面向对象编程中的基础概念。__init__用于初始化新创建的对象,而self用于访问对象的属性和方法。理解这两个概念对于编写有效的Python类至关重要。希望这个教程能帮助你理解__init__和self在Python中的作用!如果你有任何问题,随时问我。
原创
发布博客 2024.10.17 ·
175 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

用AI模拟某名人的说话风格和行为风格,有点震撼到我了

首先算出“某某和巴菲特共进过晚餐的名人”的7万多个标签,然后抽去频率出现最高的1000个标签作为其人设,然后算出了此人的120万级的知识图谱,形成某某人大脑🧠的下AI模拟。和这个模拟AI对话,其回复内容和思考方式,竟然真的有“某某名人”本人的气质。把我自己给震撼到了。
原创
发布博客 2024.10.16 ·
159 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

以neo4j知识图谱数据库export、import功能为例,说明大模型kimi.ai帮程序员并不靠谱啊

实际正确的导入命令(sunyucheng.neo4j.rawbinary.dump是当前目录一个文件夹名称)实际正确的导入命令(sunyucheng.neo4j.rawbinary.dump是当前目录一个文件夹名称)经过实际验证,不能运行,错误的。一、kimi.ai解决方案。
原创
发布博客 2024.10.16 ·
166 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

将某名人(孙宇晨)说过的话,做成知识图谱

原创
发布博客 2024.10.16 ·
98 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

以年月日时分秒为名称备份mysql数据库

【代码】以年月日时分秒为名称备份mysql数据库。
原创
发布博客 2024.10.16 ·
102 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

自然语言处理中的几个专业术语CWS POS NER DC SA SPM NLI解释

这些都是自然语言处理(NLP)领域的重要任务,每个任务都有其特定的应用场景和挑战。
原创
发布博客 2024.10.06 ·
818 阅读 ·
12 点赞 ·
0 评论 ·
7 收藏

自然语言处理:文本分类与情感分析

自然语言处理(NLP)是人工智能和语言学领域的一个分支,它致力于使计算机能够理解和处理人类语言。文本分类和情感分析是NLP中的两个常见任务。
原创
发布博客 2024.09.29 ·
466 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

图像识别:从卷积神经网络到实际应用

图像识别是深度学习中的一个重要应用领域,卷积神经网络(Convolutional Neural Networks, CNNs)在这项任务中取得了巨大的成功。
原创
发布博客 2024.09.29 ·
359 阅读 ·
4 点赞 ·
0 评论 ·
3 收藏

一个简单的基于PyTorch的多层感知器(MLP)神经网络

构建一个简单的神经网络使用PyTorch同样简单。以下是使用PyTorch构建一个多层感知器(MLP)进行分类任务的步骤,我们仍然以鸢尾花(Iris)数据集为例:2. 加载和预处理数据3. 构建模型4. 定义损失函数和优化器5. 训练模型6. 评估模型以上代码展示了如何使用PyTorch构建一个简单的神经网络,并在鸢尾花数据集上进行训练和评估。请注意,为了运行此代码,您需要安装PyTorch和相关库。
原创
发布博客 2024.09.29 ·
349 阅读 ·
5 点赞 ·
0 评论 ·
1 收藏

构建一个简单的基于TensorFlow的多层感知器(MLP)神经网络(用于分类任务)

构建一个简单的神经网络使用TensorFlow可以很快地完成。
原创
发布博客 2024.09.29 ·
161 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

深度学习模型的可解释性与挑战

尽管在提高深度学习模型的可解释性方面取得了进展,但仍面临许多挑战,如模型的固有复杂性、在保持高性能的同时提高可解释性之间的权衡,以及开发有效的技术来应对这些挑战。:有多种方法可以提高深度学习模型的可解释性,包括使用可解释的模型(如决策树)、模型特定的解释方法、模型不可知的解释方法和因果可解释性方法。:为了提高模型的可解释性,研究人员尝试通过模型压缩技术来减小模型的大小,使其更适合在资源受限的设备上使用,同时尽量保持模型的精度。:评估模型可解释性的性能是至关重要的,以确保它们提供有意义和可解释的解释。
原创
发布博客 2024.09.28 ·
365 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

循环神经网络(RNN)原理 及 优势

在RNN中,相同的权重被用于序列中的每个元素,这减少了模型的参数数量,使得模型更加高效。RNN通过这种方式可以处理任意长度的序列,并且能够捕捉序列中的长期依赖关系。:RNN能够记住之前处理的信息,这对于理解序列数据中的长期依赖关系非常重要。:RNN可以动态地处理不同长度的序列,这使得它能够灵活地处理各种长度的数据。:RNN可以处理不同长度的输入序列,这在处理文本或语音数据时非常有用。:RNN能够处理语音信号的时间序列数据,识别出语音中的模式和音素。:RNN可以用于生成音乐、分析音乐风格或者进行音频分类。
原创
发布博客 2024.09.28 ·
423 阅读 ·
5 点赞 ·
0 评论 ·
3 收藏

卷积神经网络(CNN)基本介绍 及 CNN在图像识别中应用卷积操作的过程

"Convolutional"这个词来源于数学中的卷积(Convolution)操作。在数学和信号处理领域,卷积是一种数学运算,它结合了两个函数以产生第三个函数,这个函数表达了一个函数如何通过另一个函数的“形状”来改变。在卷积神经网络(CNN)的上下文中,"Convolutional"指的是网络中的一种操作,即卷积层所做的操作。卷积层使用一组称为卷积核(或滤波器)的小矩阵来提取输入数据(如图像)的特征。
原创
发布博客 2024.09.28 ·
718 阅读 ·
10 点赞 ·
0 评论 ·
20 收藏

一个简单的神经网络示意表示

包含多个神经元,每个神经元与输入层的每个神经元相连。:可以是Sigmoid、ReLU等,用于引入非线性。:包含多个神经元,每个神经元接收一个输入特征。:与隐藏层1类似,但是连接的是隐藏层1的输出。:通过损失函数计算梯度,然后更新权重和偏置。:包含一个或多个神经元,用于输出预测结果。:用于计算预测输出与真实标签之间的差异。:与激活函数1类似。
原创
发布博客 2024.09.28 ·
192 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

一个简单的神经网络示意表示

包含多个神经元,每个神经元与输入层的每个神经元相连。:可以是Sigmoid、ReLU等,用于引入非线性。:包含多个神经元,每个神经元接收一个输入特征。:与隐藏层1类似,但是连接的是隐藏层1的输出。:通过损失函数计算梯度,然后更新权重和偏置。:包含一个或多个神经元,用于输出预测结果。:用于计算预测输出与真实标签之间的差异。:与激活函数1类似。
原创
发布博客 2024.09.28 ·
120 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏
加载更多