- 博客(350)
- 资源 (22)
- 收藏
- 关注
原创 rar、tar、zip、7z在压缩率、速度、跨平台性、是否支持加密方面的对比
需要注意的是,压缩率和速度会受到文件内容和大小的影响,实际情况可能会有所不同。此外,rar格式是商业软件,需要购买许可证才能在商业环境中使用,而tar、zip和7z都有开源的实现和免费的软件可供使用。
2024-11-23 11:23:37
331
原创 PayPal, Google Pay和Apple Pay支付渠道简单对别研究2024-1118-18点59
此外,PayPal还提供购物保护,如果购买的商品有问题,买家可以申请退款。- 将Google Pay集成到您的在线商店:您可以使用Google Pay的API或一些电子商务平台的内置工具来实现这一点。- 将Apple Pay集成到您的在线商店:您可以使用Apple Pay的API或一些电子商务平台的内置工具来实现这一点。- 验证您的电子邮件地址:PayPal会向您发送一封确认邮件,您需要点击邮件中的链接来验证您的电子邮件地址。- 连接您的银行账户:在您的PayPal账户中,您需要添加和验证您的银行账户。
2024-11-18 19:07:40
898
原创 Python之Pydantic基础教程
在Pydantic中,一个schema是一个继承自BaseModel的类,它定义了数据模型的结构和类型。id: intname: str可以定义嵌套的schema来表示复杂的数据结构。
2024-11-05 12:57:41
265
原创 Python之Pydantic基础教程
在Pydantic中,一个schema是一个继承自BaseModel的类,它定义了数据模型的结构和类型。id: intname: str可以定义嵌套的schema来表示复杂的数据结构。
2024-10-18 14:23:11
242
原创 Python各种符号的基本功能
Python 是一种动态、解释型的高级脚本语言,它支持多种编程范式,包括面向对象、命令式、函数式和过程式编程。在 Python 中,符号(或称为操作符)用于执行各种操作。同时,数字前加个.表示将其转成浮点数类型,比如。
2024-10-18 11:58:16
261
原创 Python中的`__init__`方法和`self`参数的作用
_init__方法和self参数是Python面向对象编程中的基础概念。__init__用于初始化新创建的对象,而self用于访问对象的属性和方法。理解这两个概念对于编写有效的Python类至关重要。希望这个教程能帮助你理解__init__和self在Python中的作用!如果你有任何问题,随时问我。
2024-10-17 19:39:57
230
原创 用AI模拟某名人的说话风格和行为风格,有点震撼到我了
首先算出“某某和巴菲特共进过晚餐的名人”的7万多个标签,然后抽去频率出现最高的1000个标签作为其人设,然后算出了此人的120万级的知识图谱,形成某某人大脑🧠的下AI模拟。和这个模拟AI对话,其回复内容和思考方式,竟然真的有“某某名人”本人的气质。把我自己给震撼到了。
2024-10-16 18:42:45
322
原创 以neo4j知识图谱数据库export、import功能为例,说明大模型kimi.ai帮程序员并不靠谱啊
实际正确的导入命令(sunyucheng.neo4j.rawbinary.dump是当前目录一个文件夹名称)实际正确的导入命令(sunyucheng.neo4j.rawbinary.dump是当前目录一个文件夹名称)经过实际验证,不能运行,错误的。一、kimi.ai解决方案。
2024-10-16 17:53:47
195
原创 自然语言处理中的几个专业术语CWS POS NER DC SA SPM NLI解释
这些都是自然语言处理(NLP)领域的重要任务,每个任务都有其特定的应用场景和挑战。
2024-10-06 21:02:28
930
原创 自然语言处理:文本分类与情感分析
自然语言处理(NLP)是人工智能和语言学领域的一个分支,它致力于使计算机能够理解和处理人类语言。文本分类和情感分析是NLP中的两个常见任务。
2024-09-29 17:16:59
507
原创 图像识别:从卷积神经网络到实际应用
图像识别是深度学习中的一个重要应用领域,卷积神经网络(Convolutional Neural Networks, CNNs)在这项任务中取得了巨大的成功。
2024-09-29 17:10:16
441
原创 一个简单的基于PyTorch的多层感知器(MLP)神经网络
构建一个简单的神经网络使用PyTorch同样简单。以下是使用PyTorch构建一个多层感知器(MLP)进行分类任务的步骤,我们仍然以鸢尾花(Iris)数据集为例:2. 加载和预处理数据3. 构建模型4. 定义损失函数和优化器5. 训练模型6. 评估模型以上代码展示了如何使用PyTorch构建一个简单的神经网络,并在鸢尾花数据集上进行训练和评估。请注意,为了运行此代码,您需要安装PyTorch和相关库。
2024-09-29 17:05:03
386
原创 构建一个简单的基于TensorFlow的多层感知器(MLP)神经网络(用于分类任务)
构建一个简单的神经网络使用TensorFlow可以很快地完成。
2024-09-29 17:00:04
195
原创 深度学习模型的可解释性与挑战
尽管在提高深度学习模型的可解释性方面取得了进展,但仍面临许多挑战,如模型的固有复杂性、在保持高性能的同时提高可解释性之间的权衡,以及开发有效的技术来应对这些挑战。:有多种方法可以提高深度学习模型的可解释性,包括使用可解释的模型(如决策树)、模型特定的解释方法、模型不可知的解释方法和因果可解释性方法。:为了提高模型的可解释性,研究人员尝试通过模型压缩技术来减小模型的大小,使其更适合在资源受限的设备上使用,同时尽量保持模型的精度。:评估模型可解释性的性能是至关重要的,以确保它们提供有意义和可解释的解释。
2024-09-28 18:00:10
613
原创 循环神经网络(RNN)原理 及 优势
在RNN中,相同的权重被用于序列中的每个元素,这减少了模型的参数数量,使得模型更加高效。RNN通过这种方式可以处理任意长度的序列,并且能够捕捉序列中的长期依赖关系。:RNN能够记住之前处理的信息,这对于理解序列数据中的长期依赖关系非常重要。:RNN可以动态地处理不同长度的序列,这使得它能够灵活地处理各种长度的数据。:RNN可以处理不同长度的输入序列,这在处理文本或语音数据时非常有用。:RNN能够处理语音信号的时间序列数据,识别出语音中的模式和音素。:RNN可以用于生成音乐、分析音乐风格或者进行音频分类。
2024-09-28 17:57:13
466
原创 卷积神经网络(CNN)基本介绍 及 CNN在图像识别中应用卷积操作的过程
"Convolutional"这个词来源于数学中的卷积(Convolution)操作。在数学和信号处理领域,卷积是一种数学运算,它结合了两个函数以产生第三个函数,这个函数表达了一个函数如何通过另一个函数的“形状”来改变。在卷积神经网络(CNN)的上下文中,"Convolutional"指的是网络中的一种操作,即卷积层所做的操作。卷积层使用一组称为卷积核(或滤波器)的小矩阵来提取输入数据(如图像)的特征。
2024-09-28 17:51:48
833
原创 一个简单的神经网络示意表示
包含多个神经元,每个神经元与输入层的每个神经元相连。:可以是Sigmoid、ReLU等,用于引入非线性。:包含多个神经元,每个神经元接收一个输入特征。:与隐藏层1类似,但是连接的是隐藏层1的输出。:通过损失函数计算梯度,然后更新权重和偏置。:包含一个或多个神经元,用于输出预测结果。:用于计算预测输出与真实标签之间的差异。:与激活函数1类似。
2024-09-28 17:45:11
203
原创 一个简单的神经网络示意表示
包含多个神经元,每个神经元与输入层的每个神经元相连。:可以是Sigmoid、ReLU等,用于引入非线性。:包含多个神经元,每个神经元接收一个输入特征。:与隐藏层1类似,但是连接的是隐藏层1的输出。:通过损失函数计算梯度,然后更新权重和偏置。:包含一个或多个神经元,用于输出预测结果。:用于计算预测输出与真实标签之间的差异。:与激活函数1类似。
2024-09-28 17:38:01
130
原创 神经网络:基本构成与工作原理
神经网络是一种受生物神经网络启发的计算模型,它由一系列相互连接的节点(或称为神经元)组成,这些节点能够对输入数据进行处理,并通过学习调整它们之间的连接权重来改进其输出。
2024-09-28 17:36:09
286
原创 召回率、精确率、F1值等专业术语含义
这些指标的选择取决于具体的应用场景和业务需求。例如,在医疗诊断中,可能更重视召回率,以确保所有可能的病例都被检测到。而在垃圾邮件检测中,可能更重视精确率,以减少误杀正常邮件的情况。在构建分类模型时,模型需要从数据中学习区分正样本和负样本的特征。在机器学习和数据挖掘领域,评估指标是用来衡量模型性能的重要工具。使用这些值,我们可以计算出模型的召回率、精确率、F1值等指标。
2024-09-28 17:31:02
490
原创 一个机器学习模型具体的编程例子:鸢尾花(iris)识别分类
数据集下载地址(一此常见的数据科学 Python 库,都集成了鸢尾花(iris)数据集)数据集详情鸢尾花数据集共收集了三类鸢尾花,即Setosa鸢尾花、Versicolour鸢尾花和Virginica鸢尾花,每一类鸢尾花收集了50条样本记录,共计150条。数据集包括4个属性,分别为花萼的长、花萼的宽、花瓣的长和花瓣的宽。对花瓣我们可能比较熟悉,花萼是什么呢?花萼是花冠外面的绿色被叶,在花尚未开放时,保护着花蕾。
2024-09-28 13:48:51
565
原创 机器学习之深度学习介绍
深度学习(Deep Learning)是机器学习的一个子领域,它基于人工神经网络的学习算法,特别是那些具有多层结构的网络,即所谓的“深度”神经网络。深度学习在图像识别、语音识别、自然语言处理、医学图像分析等多个领域都取得了显著的成就。
2024-09-28 13:25:01
439
原创 强化学习在自动驾驶汽车中的应用具体是如何实现的?
强化学习在自动驾驶中的应用仍然面临挑战,如样本效率、模拟到现实世界的迁移、以及确保安全性等。:奖励函数用于评价一个动作的好坏,它根据驾驶的安全性、效率、舒适性等来设计。强化学习在自动驾驶汽车中的应用主要涉及使用智能体(自动驾驶汽车)通过与环境的交互来学习最优的驾驶策略。:智能体在模拟环境或真实道路上进行训练,通过不断尝试和错误来优化其策略。:自动驾驶汽车所处的道路环境,包括交通信号、其他车辆、行人、道路状况等,被模拟为强化学习中的环境。:在自动驾驶的应用中,动作可能包括加速、减速、转向、变道等驾驶操作。
2024-09-28 13:17:31
456
原创 强化学习(Reinforcement Learning, RL)
强化学习(Reinforcement Learning, RL)是机器学习的一个重要分支,它通过与环境的交互来学习决策策略,以最大化长期累积奖励。在强化学习中,智能体(agent)通过执行一系列动作来影响环境,从而获得反馈信号,即奖励(reward)。这种学习机制模仿了生物体在自然界中的学习过程,因此具有很强的现实意义和应用前景。
2024-09-28 13:16:01
288
原创 机器学习中两种常见的数据分析技术:聚类(Clustering)和分类(Classification)区别
聚类(Clustering)和分类(Classification)是机器学习中两种常见的数据分析技术,它们在目标和方法上有所不同。
2024-09-28 13:14:01
586
原创 Linux上用shell命令将文件上传百度云盘或从百度云盘下载
将byinfo命令返回的url{截图中的A}粘贴进入浏览器,浏览器将返回一个字符串{截图中的B},并将{截图中的B}粘贴到命令行,回车。此时,登录百度网盘,你看到百度网盘下图目录“讲文本文件test.txt上传到百度网盘。”下,有了test.txt这个文件。获取百度授权请求的URL。我的应用数据/bypy/
2024-09-27 18:33:40
474
原创 nacos安全配置
配置文件路径:nacos/conf/application.properties其中nacos.core.auth.enabled=true是为了让客户端(比如java、python等访问注册到nacos时,需要授权)这样其他代码端注册nacos就需要用户名授权了,比如spring cloud的java代码需要如下授权,注意是nacos的用户名+密码为了http接口方式访问nacos服务(无需在界面http://****:8848/nacos/#/login登录,即可访问nacos的数据,比如服
2024-09-26 12:15:02
299
VC2005读取并显示单色16色256色24位位图实例与图片
2014-03-03
STL学习代码实例大全
2013-12-20
爱清净(软件开源) exe安装文件
2013-12-20
爱清净(开源)
2013-12-19
刘伟1..25章设计模式大集合
2013-12-13
gsoap_2.7.16.zip
2013-11-20
gsoap客户端Jax-ws服务端实例
2013-11-20
mssoap tookit 3.0
2013-11-19
打印(VS2005 C++)
2012-11-02
ImageMagick+Tricks+Web+Image+Effects+from+the+Command+Line+and+PHP.pdf
2012-09-02
ChatGLM-Tuning微调训练后,ChatGLM进对话,没有任何效果?
2023-04-23
TA创建的收藏夹 TA关注的收藏夹
TA关注的人