开源项目 `face-search` 使用教程

开源项目 face-search 使用教程

项目地址:https://gitcode.com/gh_mirrors/fac/face-search

1. 项目目录结构及介绍

face-search/
├── README.md
├── requirements.txt
├── setup.py
├── face_search/
│   ├── __init__.py
│   ├── main.py
│   ├── config.py
│   ├── utils/
│   │   ├── __init__.py
│   │   ├── helper.py
│   ├── models/
│   │   ├── __init__.py
│   │   ├── face_model.py
│   ├── data/
│   │   ├── images/
│   │   ├── embeddings/
├── tests/
│   ├── __init__.py
│   ├── test_main.py

目录结构说明

  • README.md: 项目介绍和使用说明。
  • requirements.txt: 项目依赖的Python包列表。
  • setup.py: 项目安装脚本。
  • face_search/: 项目的主要代码目录。
    • init.py: 使 face_search 成为一个Python包。
    • main.py: 项目的启动文件。
    • config.py: 项目的配置文件。
    • utils/: 包含项目使用的工具函数。
      • helper.py: 辅助函数。
    • models/: 包含项目的模型定义。
      • face_model.py: 人脸识别模型的定义。
    • data/: 数据存储目录。
      • images/: 存放人脸图像。
      • embeddings/: 存放人脸特征向量。
  • tests/: 包含项目的测试代码。
    • test_main.py: 测试 main.py 的单元测试文件。

2. 项目的启动文件介绍

main.py

main.py 是项目的启动文件,负责初始化配置、加载模型、处理输入图像并输出结果。

import argparse
from face_search.config import Config
from face_search.models.face_model import FaceModel
from face_search.utils.helper import load_image, save_embedding

def main():
    parser = argparse.ArgumentParser(description="Face Search Application")
    parser.add_argument('--image_path', type=str, required=True, help="Path to the input image")
    args = parser.parse_args()

    config = Config()
    model = FaceModel(config)

    image = load_image(args.image_path)
    embedding = model.get_embedding(image)
    save_embedding(embedding, config.embedding_path)

if __name__ == "__main__":
    main()

主要功能

  • 解析命令行参数: 通过 argparse 模块解析命令行参数,获取输入图像的路径。
  • 加载配置: 从 config.py 中加载项目的配置。
  • 初始化模型: 使用 FaceModel 类初始化人脸识别模型。
  • 处理图像: 加载输入图像,并使用模型生成人脸特征向量。
  • 保存结果: 将生成的特征向量保存到指定路径。

3. 项目的配置文件介绍

config.py

config.py 文件包含了项目的配置信息,如模型路径、数据存储路径等。

class Config:
    def __init__(self):
        self.model_path = "models/face_recognition_model.pth"
        self.embedding_path = "data/embeddings/embedding.npy"
        self.image_path = "data/images/"

配置项说明

  • model_path: 人脸识别模型的路径。
  • embedding_path: 生成的特征向量存储路径。
  • image_path: 图像数据存储路径。

通过这些配置项,可以灵活地调整项目的行为,如更换模型、更改数据存储位置等。


以上是 face-search 项目的使用教程,涵盖了项目的目录结构、启动文件和配置文件的详细介绍。希望这份文档能帮助你快速上手并使用该项目。

face-search face-search 项目地址: https://gitcode.com/gh_mirrors/fac/face-search

功能设计 ​ 系统功能模块较为简单,主要功能就是**新增人脸**和**人脸搜索**两个功能,其中新增人脸使用页面上传和压缩包批量上传两个方式,压缩包上传时文件名称为用户名,下面主要说明人脸搜索的功能流程 ##### Milvues ​ 在介绍前需要说明一下Mulvus ​ Milvus 向量数据库能够帮助用户轻松应对海量非结构化数据(图片 / 视频 / 语音 / 文本)检索。单节点 Milvus 可以在秒内完成十亿级的向量搜索 ​ 因此虹软的SDK只能提取向量及对比的功能,在大规模人脸识别中,需要搜索引擎对于人脸数据进行初步筛选到一个较小的范围后在利用虹软的SDK进行测试,值得一提的是,博主多次测试后Milvues返回的匹配率足以满足人脸匹配的要求,Milvus的安装部署和使用文档参考 https://milvus.io/cn/docs/v2.0.x ​ **特别说明的是**虹软提取的数组是一个经过归一后的1032长度的byte数组,我们需要对数组进行转换,去除前8位的版本号,并将1024长度的byte转为256长度的float向量,这部分可以利用Arrays提供的方法进行转换,代码中也有相应的工具类 ##### 人脸上传(单张) ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孔祯拓Belinda

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值