Sweetviz 项目教程

Sweetviz 项目教程

sweetviz Visualize and compare datasets, target values and associations, with one line of code. sweetviz 项目地址: https://gitcode.com/gh_mirrors/sw/sweetviz

1. 项目介绍

Sweetviz 是一个开源的 Python 库,旨在通过生成美观且高密度的可视化报告来快速启动探索性数据分析(EDA)。只需两行代码,Sweetviz 就能生成一个完全自包含的 HTML 应用程序,帮助用户快速分析目标特征、训练数据与测试数据的对比以及其他数据特征化任务。

2. 项目快速启动

安装

首先,使用 pip 安装 Sweetviz:

pip install sweetviz

基本使用

以下是一个简单的示例,展示如何使用 Sweetviz 生成数据分析报告:

import sweetviz as sv

# 加载数据集
import pandas as pd
data = pd.read_csv('titanic.csv')

# 生成报告
my_report = sv.analyze(data)

# 显示报告
my_report.show_html()  # 默认生成 "SWEETVIZ_REPORT.html"

参数说明

  • analyze(source, target_feat=None, feat_cfg=None, pairwise_analysis='auto', verbosity='default')
    • source: 数据框或包含数据框和名称的元组。
    • target_feat: 目标特征的名称。
    • feat_cfg: 特征配置对象,用于跳过某些特征或强制指定特征类型。
    • pairwise_analysis: 是否进行成对分析,默认自动。
    • verbosity: 输出详细程度,可选值为 full, progress_only, off

3. 应用案例和最佳实践

案例1:Titanic 数据集分析

使用 Titanic 数据集进行目标特征分析,例如“Survived”特征与其他特征的关系:

import sweetviz as sv
import pandas as pd

data = pd.read_csv('titanic.csv')
my_report = sv.analyze(data, target_feat='Survived')
my_report.show_html()

案例2:训练数据与测试数据对比

对比训练数据与测试数据,分析数据分布的差异:

import sweetviz as sv
import pandas as pd

train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')

my_report = sv.compare([train_data, "Training Data"], [test_data, "Test Data"])
my_report.show_html()

4. 典型生态项目

Pandas

Sweetviz 依赖于 Pandas 库,Pandas 提供了强大的数据处理功能,是数据分析领域的基础工具。

Jupyter Notebook

Sweetviz 生成的报告可以在 Jupyter Notebook 中直接显示,方便用户进行交互式数据分析。

Matplotlib 和 Seaborn

虽然 Sweetviz 本身提供了丰富的可视化功能,但在某些情况下,用户可能需要结合 Matplotlib 和 Seaborn 进行更复杂的可视化操作。

通过以上内容,您可以快速上手 Sweetviz,并利用其强大的功能进行数据分析。

sweetviz Visualize and compare datasets, target values and associations, with one line of code. sweetviz 项目地址: https://gitcode.com/gh_mirrors/sw/sweetviz

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张飚贵Alarice

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值