MedMNIST: 用于医学图像分类的开源数据集
MedMNIST 是一个开源项目,旨在为医学图像分类提供标准化数据集。该项目主要使用 Python 编程语言开发。
核心功能
MedMNIST 项目包含以下几个核心功能:
- 提供了18个标准化的生物医学图像数据集,包括12个2D数据集和6个3D数据集。
- 所有图像都经过预处理,统一为28x28(2D)或28x28x28(3D)大小,并附有相应的分类标签,无需用户具备背景知识。
- 覆盖了生物医学图像的主要数据模态,并设计用于对轻量级的2D和3D图像进行分类,支持各种数据规模和多种任务类型,如二分类、多分类、序数回归和多标签任务。
- 数据集包含大约708K个2D图像和10K个3D图像,可以支持生物医学图像分析、计算机视觉和机器学习领域的研究和教育用途。
最近更新的功能
项目最近更新的功能包括:
- 发布了MedMNIST+,提供了更大的图像尺寸选项,包括64x64、128x128和224x224的2D版本,以及64x64x64的3D版本。这个大型版本作为之前28尺寸MedMNIST的补充,可以作为医学基础模型的标准化基准。
- 第三方更新中,社区成员发布了针对MedMNIST+的全面评估,涵盖了10种不同的深度学习模型,通过三种不同的训练方案训练,覆盖所有12个2D数据集和可用的图像分辨率。
- 引入了MedMNIST-C,这是MedMNIST数据集的一个损坏版本,具有针对不同模态的图像损坏和增强API,灵感来源于ImageNet-C基准。这项工作旨在评估和增强模型的鲁棒性。
请注意,MedMNIST 数据集不适用于临床使用,而是作为研究和教育用途的易用资源。