ONNX Runtime Generative AI 扩展教程

ONNX Runtime Generative AI 扩展教程

onnxruntime-genaiGenerative AI extensions for onnxruntime项目地址:https://gitcode.com/gh_mirrors/on/onnxruntime-genai

项目介绍

ONNX Runtime Generative AI 扩展是由微软开发的一个开源项目,旨在为 ONNX Runtime 提供生成式 AI 功能。该项目允许用户在设备上和云中运行大型语言模型(LLMs)和多模态模型。通过实现生成式 AI 循环,包括预处理、后处理、推理、logits 处理、搜索和采样以及 KV 缓存管理,该项目提供了一个高性能、灵活且易于使用的方式来运行 LLMs。

项目快速启动

安装

首先,确保你已经安装了 Python 和 pip。然后,通过以下命令安装 ONNX Runtime Generative AI 扩展:

pip install onnxruntime-genai

示例代码

以下是一个简单的示例代码,展示如何使用 ONNX Runtime Generative AI 扩展来运行一个生成式模型:

import onnxruntime_genai as ort_genai

# 加载模型
model_path = "path/to/your/model.onnx"
session = ort_genai.InferenceSession(model_path)

# 输入数据
input_data = {"input_ids": [1, 2, 3, 4, 5]}

# 运行推理
output = session.run(None, input_data)

# 输出结果
print(output)

应用案例和最佳实践

应用案例

  1. 文本生成:使用 ONNX Runtime Generative AI 扩展来生成高质量的文本内容,如文章、故事或对话。
  2. 代码补全:在编程环境中,使用该扩展来辅助代码补全和错误修复。
  3. 图像描述:结合多模态模型,生成图像的描述文本。

最佳实践

  1. 模型优化:在使用模型之前,进行模型优化以提高推理速度和减少资源消耗。
  2. 批处理:合理利用批处理来提高推理效率。
  3. 缓存管理:有效管理 KV 缓存,以减少重复计算和提高性能。

典型生态项目

  1. ONNX Runtime:ONNX Runtime 是一个高性能的推理引擎,支持多种硬件和平台。
  2. Hugging Face Transformers:与 Hugging Face 的 Transformers 库集成,提供丰富的预训练模型资源。
  3. PyTorch:与 PyTorch 深度集成,支持从 PyTorch 模型无缝转换到 ONNX 模型。

通过这些生态项目的支持,ONNX Runtime Generative AI 扩展能够更好地服务于各种生成式 AI 应用场景。

onnxruntime-genaiGenerative AI extensions for onnxruntime项目地址:https://gitcode.com/gh_mirrors/on/onnxruntime-genai

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强海寒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值