ONNX Runtime Generative AI 扩展教程
项目介绍
ONNX Runtime Generative AI 扩展是由微软开发的一个开源项目,旨在为 ONNX Runtime 提供生成式 AI 功能。该项目允许用户在设备上和云中运行大型语言模型(LLMs)和多模态模型。通过实现生成式 AI 循环,包括预处理、后处理、推理、logits 处理、搜索和采样以及 KV 缓存管理,该项目提供了一个高性能、灵活且易于使用的方式来运行 LLMs。
项目快速启动
安装
首先,确保你已经安装了 Python 和 pip。然后,通过以下命令安装 ONNX Runtime Generative AI 扩展:
pip install onnxruntime-genai
示例代码
以下是一个简单的示例代码,展示如何使用 ONNX Runtime Generative AI 扩展来运行一个生成式模型:
import onnxruntime_genai as ort_genai
# 加载模型
model_path = "path/to/your/model.onnx"
session = ort_genai.InferenceSession(model_path)
# 输入数据
input_data = {"input_ids": [1, 2, 3, 4, 5]}
# 运行推理
output = session.run(None, input_data)
# 输出结果
print(output)
应用案例和最佳实践
应用案例
- 文本生成:使用 ONNX Runtime Generative AI 扩展来生成高质量的文本内容,如文章、故事或对话。
- 代码补全:在编程环境中,使用该扩展来辅助代码补全和错误修复。
- 图像描述:结合多模态模型,生成图像的描述文本。
最佳实践
- 模型优化:在使用模型之前,进行模型优化以提高推理速度和减少资源消耗。
- 批处理:合理利用批处理来提高推理效率。
- 缓存管理:有效管理 KV 缓存,以减少重复计算和提高性能。
典型生态项目
- ONNX Runtime:ONNX Runtime 是一个高性能的推理引擎,支持多种硬件和平台。
- Hugging Face Transformers:与 Hugging Face 的 Transformers 库集成,提供丰富的预训练模型资源。
- PyTorch:与 PyTorch 深度集成,支持从 PyTorch 模型无缝转换到 ONNX 模型。
通过这些生态项目的支持,ONNX Runtime Generative AI 扩展能够更好地服务于各种生成式 AI 应用场景。