Hugging Face Exporters 开源项目教程

Hugging Face Exporters 开源项目教程

exportersExport Hugging Face models to Core ML and TensorFlow Lite项目地址:https://gitcode.com/gh_mirrors/ex/exporters

项目介绍

Hugging Face Exporters 是一个由 Hugging Face 团队开发的开源项目,旨在帮助用户将机器学习模型从 Hugging Face 模型库导出到不同的格式和平台。该项目支持多种导出格式,包括 ONNX、TensorFlow SavedModel 等,使得模型可以在不同的深度学习框架和部署环境中使用。

项目快速启动

安装依赖

首先,确保你已经安装了 Python 和 pip。然后,通过以下命令安装 Hugging Face Exporters:

pip install exporters

导出模型

以下是一个简单的示例,展示如何将一个 Hugging Face 模型导出为 ONNX 格式:

from exporters import export_onnx
from transformers import AutoModel, AutoTokenizer

# 加载预训练模型和分词器
model_name = "bert-base-uncased"
model = AutoModel.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# 导出模型为 ONNX 格式
export_onnx(model, tokenizer, "bert-base-uncased.onnx")

应用案例和最佳实践

案例一:文本分类

在文本分类任务中,可以使用 Hugging Face Exporters 将预训练的 BERT 模型导出为 ONNX 格式,以便在生产环境中进行快速推理。以下是一个示例代码:

from exporters import export_onnx
from transformers import AutoModelForSequenceClassification, AutoTokenizer

# 加载预训练的文本分类模型和分词器
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# 导出模型为 ONNX 格式
export_onnx(model, tokenizer, "distilbert-sst-2.onnx")

案例二:命名实体识别

在命名实体识别任务中,可以将预训练的 BERT 模型导出为 ONNX 格式,以便在边缘设备上进行实时推理。以下是一个示例代码:

from exporters import export_onnx
from transformers import AutoModelForTokenClassification, AutoTokenizer

# 加载预训练的命名实体识别模型和分词器
model_name = "dbmdz/bert-large-cased-finetuned-conll03-english"
model = AutoModelForTokenClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# 导出模型为 ONNX 格式
export_onnx(model, tokenizer, "bert-ner.onnx")

典型生态项目

ONNX Runtime

ONNX Runtime 是一个高性能的推理引擎,支持 ONNX 格式的模型。通过将 Hugging Face 模型导出为 ONNX 格式,可以在 ONNX Runtime 上进行快速推理,从而提高部署效率。

TensorFlow Lite

TensorFlow Lite 是 TensorFlow 的轻量级版本,适用于移动和嵌入式设备。通过将 Hugging Face 模型导出为 TensorFlow SavedModel 格式,并进一步转换为 TensorFlow Lite 格式,可以在这些设备上进行高效的模型推理。

PyTorch Mobile

PyTorch Mobile 是 PyTorch 的移动版本,支持在移动设备上进行模型推理。通过将 Hugging Face 模型导出为 PyTorch 格式,并使用 PyTorch Mobile 进行部署,可以在移动设备上实现高性能的模型推理。

通过以上模块的介绍和示例代码,希望你能快速上手 Hugging Face Exporters 项目,并在实际应用中发挥其强大的功能。

exportersExport Hugging Face models to Core ML and TensorFlow Lite项目地址:https://gitcode.com/gh_mirrors/ex/exporters

springboot034基于Springboot+Vue在线商城系统设计与开发毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

左唯妃Stan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值