现代时间序列预测:Python实战指南

现代时间序列预测:Python实战指南

Modern-Time-Series-Forecasting-with-Python Modern Time Series Forecasting with Python, published by Packt Modern-Time-Series-Forecasting-with-Python 项目地址: https://gitcode.com/gh_mirrors/mo/Modern-Time-Series-Forecasting-with-Python

项目介绍

在当今数据驱动的时代,时间序列预测已成为各行各业不可或缺的一部分。《Modern Time Series Forecasting with Python》是一本由Packt Publishing出版的书籍,旨在帮助数据科学家、分析师和机器学习工程师掌握现代时间序列预测技术。本书不仅涵盖了传统的统计方法,如ARIMA,还深入探讨了最新的机器学习和深度学习技术,如N-BEATS和Autoformer。通过本书,读者将能够构建行业级的时间序列预测模型,并掌握从数据处理到模型部署的全流程。

项目技术分析

本书的技术栈主要围绕Python展开,涵盖了多种流行的机器学习和深度学习库,如Pandas、Scikit-learn、TensorFlow和PyTorch。书中详细介绍了如何使用这些工具进行数据预处理、特征工程、模型训练和评估。此外,本书还特别强调了时间序列数据的独特性,并提供了多种处理时间序列数据的方法和技巧。

项目及技术应用场景

时间序列预测在多个领域都有广泛的应用,包括但不限于:

  • 金融领域:股票价格预测、风险管理、交易策略优化。
  • 零售业:销售预测、库存管理、供应链优化。
  • 能源行业:电力需求预测、能源消耗分析、可再生能源生产预测。
  • 医疗健康:疾病传播预测、患者流量预测、药物需求预测。

本书通过实际案例和代码示例,展示了如何在不同行业中应用时间序列预测技术,帮助读者解决实际问题。

项目特点

  1. 全面的技术覆盖:从传统的统计方法到最新的深度学习模型,本书提供了全面的技术指南。
  2. 实战导向:书中包含大量实战代码和案例,帮助读者快速上手并应用所学知识。
  3. 行业经验分享:作者Manu Joseph拥有丰富的行业经验,书中分享了许多行业内的最佳实践和技巧。
  4. 易于上手:即使读者没有深厚的机器学习背景,也能通过本书快速掌握时间序列预测的核心技术。

结语

《Modern Time Series Forecasting with Python》是一本不可多得的时间序列预测实战指南,适合所有希望在数据科学和机器学习领域深入发展的读者。无论你是初学者还是有经验的从业者,本书都能为你提供宝贵的知识和实战经验。立即获取你的副本,开启你的时间序列预测之旅吧!


相关链接

Modern-Time-Series-Forecasting-with-Python Modern Time Series Forecasting with Python, published by Packt Modern-Time-Series-Forecasting-with-Python 项目地址: https://gitcode.com/gh_mirrors/mo/Modern-Time-Series-Forecasting-with-Python

近十年来,研究者分析时间序列数据的方式发生了巨大变化。这本十分必需的书归纳了这一日益重要领域的主要最新进展,并就其现有表述给出了一个单一的一致的表示。汉密尔顿就诸如向量自回归、广义矩方法估计、单位根的经济和统计结果、随时间变化的方差以及非线性时间序列模型等重要创新,首次给出了一本完整的和详细的教科书。另外,汉密尔顿还介绍了动态系统分析的传统工具,如线性表示、自协方差、生成函数、谱分析以及卡尔曼滤子,并介绍了它们在经济理论以及研究并解释真实一世界数据两方面的用途。 本书的目的在于为学生、研究者和预测者提供关于动态系统、经济计量学和时间序列分析方面的概览。从第一个原理开始,汉密尔顿的明析介绍使得新旧进展皆适合于大学一年级学生和非专业人员。另外,时间序列分析从内容的广度和深度上使其成为该领域前沿研究者不可多得的一本参考书。汉密尔顿通过大量的数值例子解释理论结果如何在实践中运用并将大量推导细节放在每章末的数学附录中,以此达到了上述双重目的。本书为该领域的学生和研究者提供了一个路径地图,相信在未来几年内它都会是较权威的指南。 詹姆斯D.汉密尔顿是加利福尼亚大学圣地亚哥分校的经济学教授。他获得了加利福尼亚大学伯克利分校的博士学位,并曾在弗吉尼亚大学任教。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计姗群

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值