KF-DeBERTa 项目使用教程
KF-DeBERTa카카오뱅크 & 에프엔가이드에서 학습한 금융 도메인 특화 언어모델项目地址:https://gitcode.com/gh_mirrors/kf/KF-DeBERTa
1. 项目的目录结构及介绍
KF-DeBERTa 项目的目录结构如下:
KF-DeBERTa/
├── data/
│ ├── processed/
│ └── raw/
├── models/
│ ├── checkpoints/
│ └── pretrained/
├── scripts/
│ ├── train.py
│ └── evaluate.py
├── config/
│ ├── default.yaml
│ └── custom.yaml
├── README.md
└── requirements.txt
目录介绍:
data/
: 存放数据文件,包括原始数据 (raw/
) 和处理后的数据 (processed/
)。models/
: 存放模型文件,包括训练过程中的检查点 (checkpoints/
) 和预训练模型 (pretrained/
)。scripts/
: 存放脚本文件,包括训练脚本 (train.py
) 和评估脚本 (evaluate.py
)。config/
: 存放配置文件,包括默认配置 (default.yaml
) 和自定义配置 (custom.yaml
)。README.md
: 项目说明文档。requirements.txt
: 项目依赖文件。
2. 项目的启动文件介绍
项目的启动文件主要位于 scripts/
目录下:
train.py
: 用于启动训练过程的脚本。evaluate.py
: 用于启动评估过程的脚本。
启动文件介绍:
-
train.py
:- 功能:加载配置文件,初始化模型,读取数据,进行训练。
- 使用方法:在终端中运行
python scripts/train.py
。
-
evaluate.py
:- 功能:加载配置文件,初始化模型,读取数据,进行评估。
- 使用方法:在终端中运行
python scripts/evaluate.py
。
3. 项目的配置文件介绍
项目的配置文件位于 config/
目录下:
default.yaml
: 默认配置文件,包含项目的默认参数设置。custom.yaml
: 自定义配置文件,用户可以根据需要修改参数。
配置文件介绍:
-
default.yaml
:- 包含训练和评估过程中的默认参数,如数据路径、模型路径、训练轮数、学习率等。
-
custom.yaml
:- 用户可以根据需要修改的配置文件,覆盖默认配置中的参数。
配置文件示例:
# default.yaml
data_path: "data/processed/"
model_path: "models/checkpoints/"
num_epochs: 10
learning_rate: 0.001
batch_size: 32
# custom.yaml
num_epochs: 20
learning_rate: 0.0005
通过修改 custom.yaml
文件,用户可以自定义训练和评估过程中的参数。
KF-DeBERTa카카오뱅크 & 에프엔가이드에서 학습한 금융 도메인 특화 언어모델项目地址:https://gitcode.com/gh_mirrors/kf/KF-DeBERTa