cw2vec: 中文词向量学习融合笔画n-gram信息

cw2vec: 中文词向量学习融合笔画n-gram信息

cw2veccw2vec: Learning Chinese Word Embeddings with Stroke n-gram Information 项目地址:https://gitcode.com/gh_mirrors/cw2/cw2vec


项目介绍

cw2vec 是一款专注于中文的词向量学习工具,由蚂蚁金服人工智能部推出。它通过整合汉字的笔画n-gram信息来增强传统词向量模型,从而更精准地捕捉中文词汇之间的语义关系。该项目不仅实现了传统的skip-gram和CBOW模型,还包含了fasttext的子词级别学习方式,并特别针对中文特性做了优化。

主要特点:

  • 融合笔画信息:利用汉字的结构信息提高词向量质量。
  • 多模型支持:包括word2vec的skip-gram、CBOW,以及fasttext的变体。
  • 易于编译与运行:支持通过CMake构建系统快速编译。

项目快速启动

确保你的开发环境已安装必要的依赖,包括cmake 3.10.0及以上版本,GNU Make 4.1,以及gcc 5.4.0或更高版本。

  1. 克隆仓库

    git clone https://github.com/dalinvip/cw2vec.git
    
  2. 编译项目

    进入到cw2vec/word2vec目录下,然后执行CMake命令进行配置并编译:

    cd cw2vec/word2vec
    mkdir build
    cd build
    cmake ..
    make
    

    编译成功后,你会在/bin目录下找到可执行文件。

  3. 运行示例

    使用提供的样例数据或者准备自己的训练数据,例如执行skip-gram训练:

    ./word2vec/bin/word2vec skipgram -input 数据路径/train.txt -output 输出路径/skipgram_out -lr 0.025 -dim 100 -ws 5 -epoch 5 -minCount 10 -neg 5 -loss ns -thread 8
    

应用案例和最佳实践

cw2vec 可广泛应用于NLP的各种场景,如文本分类、情感分析、推荐系统等。最佳实践通常包括:

  • 预训练词向量的微调:利用已有模型,在特定领域数据上进一步训练以适应特定任务。
  • 联合笔画特征的下游任务:在涉及到中文的自然语言理解任务中,使用cw2vec生成的词向量可以作为特征输入,特别是当任务与字形结构敏感性有关时。

示例代码片段

为了演示,这里展示如何配置cbow模型训练过程:

./word2vec/bin/word2vec cbow -input 自定义_train.txt -output 自定义_cbow_out -lr 0.05 -dim 100 -ws 5 -epoch 5 -minCount 10 -neg 5

典型生态项目

虽然直接关联的“典型生态项目”信息没有提供,但类似的词向量和自然语言处理工具往往会被集成到诸如搜索引擎优化、智能客服、文本挖掘和自动摘要等更大的生态系统中。开发者可以通过结合cw2vec生成的词向量与其他NLP框架(如TensorFlow、PyTorch中的模型)来创建复杂的自然语言处理解决方案。社区内对于中文语言处理的贡献者可能会基于cw2vec创建各种工具和服务,例如增强版的聊天机器人、文本相似度检测等。


以上便是关于 cw2vec 项目的基本介绍、快速启动指南、应用实例以及它潜在的生态应用概述。希望这个教程能帮助您顺利开始使用该工具,并在中文自然语言处理的道路上探索更多可能。

cw2veccw2vec: Learning Chinese Word Embeddings with Stroke n-gram Information 项目地址:https://gitcode.com/gh_mirrors/cw2/cw2vec

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计纬延

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值