SMRF-MATLAB 使用与安装指南
smrf-matlab 项目地址: https://gitcode.com/gh_mirrors/smr/smrf-matlab
本指南将详细介绍如何使用和理解由 Thomas Pingel 开发的 smrf-matlab
这一开源项目。该项目旨在通过一种简单的形态学滤波方法来识别来自 LiDAR 数据的地面点。以下是关键内容模块:
1. 目录结构及介绍
项目根目录结构如下:
master
:这是默认的分支,包含了所有主要的代码和数据。README.md
:项目的主要说明文档,涵盖了基本介绍、用途和简单指引。license.txt
:项目的授权协议,基于BSD-2-Clause许可证。- 核心代码文件:
smrf.m
:主函数,实现地面识别的核心算法。createDSM.m
,createNet.m
,progressiveFilter.m
等:辅助函数,用于处理LiDAR数据,创建数字表面模型等。demo_smrf.m
:示例脚本,展示了如何调用smrf.m
进行地面点的识别。
- 图像文件(如
.png
):可能包含了结果展示或示意图。
每个MATLAB脚本通常都对应一个特定的功能,便于用户理解和调用。
2. 启动文件介绍
启动或主要入口点是示例脚本 demo_smrf.m
。这个文件提供了快速上手SMRF算法的途径,演示了如何输入LiDAR数据的基本参数,比如XYZ坐标向量以及必要的配置参数(如cellsize、slope threshold和maximum window size),并执行地面点的识别过程。通过运行此脚本,新用户可以迅速了解如何使用该工具包,并看到其在实际数据上的应用效果。
3. 配置文件介绍
实际上,smrf-matlab
项目并未直接提供一个独立的配置文件。它的“配置”更多体现在调用smrf.m
函数时传递的参数中。这意味着用户的“配置”是动态的,通过函数调用来实现。重要参数包括:
x
,y
,z
:分别代表LiDAR点云的X坐标、Y坐标和Z坐标向量。c
:单元格大小(cellsize),决定了网格化的分辨率。s
:坡度阈值,用于过滤非地面点。w
:最大窗口大小,定义了处理时考虑的最大范围。
因此,用户应按照自身数据和需求,在调用smrf()
函数时设置这些参数,以达到最佳的地表识别效果。
以上内容构成了一个基础的使用和安装指南,帮助用户快速入门smrf-matlab
项目。记得查看README.md
获取最新信息和额外的使用提示。
smrf-matlab 项目地址: https://gitcode.com/gh_mirrors/smr/smrf-matlab