Deep GCNS Torch 开源项目教程
1. 项目的目录结构及介绍
Deep GCNS Torch 项目的目录结构如下:
deep_gcns_torch/
├── README.md
├── requirements.txt
├── setup.py
├── data/
├── examples/
├── models/
├── scripts/
├── tests/
└── utils/
目录结构介绍
- README.md: 项目说明文件,包含项目的基本信息和使用指南。
- requirements.txt: 项目依赖文件,列出了运行项目所需的Python包。
- setup.py: 项目安装脚本,用于安装项目及其依赖。
- data/: 数据目录,用于存放训练和测试数据。
- examples/: 示例目录,包含一些使用项目的示例代码。
- models/: 模型目录,包含项目的各种深度图卷积网络模型。
- scripts/: 脚本目录,包含一些辅助脚本,如数据预处理脚本等。
- tests/: 测试目录,包含项目的单元测试和集成测试。
- utils/: 工具目录,包含一些辅助函数和工具类。
2. 项目的启动文件介绍
项目的启动文件通常位于 examples/
目录下,例如 examples/train.py
。
启动文件介绍
- train.py: 训练脚本,用于启动模型的训练过程。
# examples/train.py
import argparse
from models import DeepGCN
from utils import load_data
def main(args):
model = DeepGCN(args)
data = load_data(args.data_path)
model.train(data)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data_path", type=str, required=True)
args = parser.parse_args()
main(args)
使用方法
python examples/train.py --data_path /path/to/data
3. 项目的配置文件介绍
项目的配置文件通常位于项目根目录下,例如 config.yaml
。
配置文件介绍
- config.yaml: 配置文件,包含模型的各种参数设置。
# config.yaml
model:
name: DeepGCN
hidden_dim: 128
num_layers: 10
data:
path: /path/to/data
training:
epochs: 100
batch_size: 32
使用方法
在启动文件中读取配置文件:
# examples/train.py
import yaml
def load_config(config_path):
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
return config
def main(args):
config = load_config(args.config_path)
model = DeepGCN(config['model'])
data = load_data(config['data']['path'])
model.train(data, config['training'])
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config_path", type=str, required=True)
args = parser.parse_args()
main(args)
使用方法
python examples/train.py --config_path config.yaml
通过以上步骤,您可以了解并使用 Deep GCNS Torch 开源项目。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考