Image-Contrast-Enhancement 项目教程
1. 项目的目录结构及介绍
Image-Contrast-Enhancement/
├── data/
│ ├── input/
│ └── output/
├── src/
│ ├── enhance.py
│ └── utils.py
├── config/
│ └── settings.json
├── README.md
└── requirements.txt
- data/: 存放输入和输出图像的目录。
- input/: 用于存放待处理的图像文件。
- output/: 用于存放处理后的图像文件。
- src/: 包含项目的主要源代码。
- enhance.py: 实现图像对比度增强的核心功能。
- utils.py: 包含一些辅助函数。
- config/: 存放项目的配置文件。
- settings.json: 配置文件,包含项目运行所需的参数。
- README.md: 项目说明文档。
- requirements.txt: 列出了项目依赖的Python包。
2. 项目的启动文件介绍
项目的启动文件是 src/enhance.py
。该文件包含了图像对比度增强的主要逻辑。以下是 enhance.py
的简要介绍:
# src/enhance.py
import cv2
import numpy as np
from utils import load_image, save_image
def enhance_contrast(image_path, output_path, method='clahe'):
# 加载图像
image = load_image(image_path)
# 根据方法选择不同的对比度增强算法
if method == 'clahe':
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
enhanced_image = clahe.apply(image)
elif method == 'histogram_equalization':
enhanced_image = cv2.equalizeHist(image)
else:
raise ValueError("Unsupported method")
# 保存增强后的图像
save_image(enhanced_image, output_path)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Image Contrast Enhancement")
parser.add_argument("input_path", type=str, help="Path to the input image")
parser.add_argument("output_path", type=str, help="Path to save the enhanced image")
parser.add_argument("--method", type=str, default="clahe", choices=["clahe", "histogram_equalization"], help="Contrast enhancement method")
args = parser.parse_args()
enhance_contrast(args.input_path, args.output_path, args.method)
- enhance_contrast: 该函数接受输入图像路径、输出图像路径和增强方法作为参数,并根据指定的方法对图像进行对比度增强。
- main: 提供了命令行接口,允许用户通过命令行参数指定输入图像路径、输出图像路径和增强方法。
3. 项目的配置文件介绍
项目的配置文件位于 config/settings.json
。该文件包含了项目运行所需的一些参数。以下是 settings.json
的内容示例:
{
"default_method": "clahe",
"clahe_params": {
"clipLimit": 2.0,
"tileGridSize": [8, 8]
},
"histogram_equalization_params": {}
}
- default_method: 默认的对比度增强方法。
- clahe_params: CLAHE 方法的参数,包括
clipLimit
和tileGridSize
。 - histogram_equalization_params: 直方图均衡化方法的参数(目前为空)。
通过配置文件,用户可以灵活地调整对比度增强的参数,以适应不同的图像处理需求。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考