3DDFA_V2 项目使用教程

3DDFA_V2 项目使用教程

3DDFA_V2The official PyTorch implementation of Towards Fast, Accurate and Stable 3D Dense Face Alignment, ECCV 2020.项目地址:https://gitcode.com/gh_mirrors/3d/3DDFA_V2

目录结构及介绍

3DDFA_V2 项目的目录结构如下:

3DDFA_V2/
├── FaceBoxes/
├── Sim3DR/
├── bfm/
├── configs/
├── docs/images/
├── examples/
├── models/
├── utils/
├── weights/
├── .gitignore
├── LICENSE
├── TDDFA.py
├── TDDFA_ONNX.py
├── build.sh
├── demo.ipynb
├── demo.py
├── demo_video.py
├── demo_video_smooth.py
├── demo_webcam_smooth.py
├── gradio_demo.py
├── latency.py
├── readme.md
├── requirements.txt
├── speed_cpu.py

各目录和文件的简要介绍:

  • FaceBoxes/: 包含 FaceBoxes 模型的相关文件。
  • Sim3DR/: 包含 Sim3DR 模型的相关文件。
  • bfm/: 包含 Basel Face Model 的相关文件。
  • configs/: 包含项目的配置文件。
  • docs/images/: 包含文档所需的图片。
  • examples/: 包含示例输入文件。
  • models/: 包含模型的定义文件。
  • utils/: 包含各种实用工具函数。
  • weights/: 包含预训练的权重文件。
  • .gitignore: Git 忽略文件列表。
  • LICENSE: 项目许可证。
  • TDDFA.py: 3DDFA 的主文件。
  • TDDFA_ONNX.py: 使用 ONNX 的 3DDFA 实现。
  • build.sh: 构建脚本。
  • demo.ipynb: 示例的 Jupyter Notebook。
  • demo.py: 示例脚本,用于处理静态图像。
  • demo_video.py: 示例脚本,用于处理视频。
  • demo_video_smooth.py: 示例脚本,用于平滑处理视频。
  • demo_webcam_smooth.py: 示例脚本,用于平滑处理摄像头输入。
  • gradio_demo.py: 使用 Gradio 的示例。
  • latency.py: 测量延迟的脚本。
  • readme.md: 项目说明文档。
  • requirements.txt: 项目依赖列表。
  • speed_cpu.py: 测量 CPU 速度的脚本。

项目的启动文件介绍

项目的启动文件主要是 demo.pydemo_video.py。以下是它们的简要介绍:

demo.py

demo.py 是用于处理静态图像的启动文件。可以通过以下命令运行:

python3 demo.py -f examples/inputs/emma.jpg --onnx

该脚本支持多种选项,包括 2d_sparse, 2d_dense, 3d, depth, pncc, pose, uv_tex, ply, obj 等。

demo_video.py

demo_video.py 是用于处理视频的启动文件。可以通过以下命令运行:

python3 demo_video.py -f examples/inputs/videos/214.avi --onnx

该脚本可以处理视频文件,并输出相应的处理结果。

项目的配置文件介绍

项目的配置文件主要位于 configs/ 目录下。以下是一些重要的配置文件:

configs/mb1_120x120.yml

该配置文件定义了模型的基本参数,包括输入尺寸、模型路径等。

configs/mb1_120x120_ssd.yml

该配置文件定义了使用 SSD 的模型参数。

configs/mb1_120x120_v2.yml

该配置文件定义了 3DDFA_V2 的模型参数。

这些配置文件可以通过修改其中的参数来调整模型的行为。例如,可以修改输入尺寸、模型路径等参数。

以上是 3DDFA_V2 项目的基本使用教程,希望对您有所帮助。

3DDFA_V2The official PyTorch implementation of Towards Fast, Accurate and Stable 3D Dense Face Alignment, ECCV 2020.项目地址:https://gitcode.com/gh_mirrors/3d/3DDFA_V2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

葛月渊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值