- 博客(122)
- 资源 (33)
- 收藏
- 关注
原创 Linux系统使用
目录打开pycharm训练结果放置位置安装包打开pycharm右键打开terminal输入 ./pycharm.sh训练结果放置位置文件夹下 other locations – computer – 1T安装包terminal 进入到具体的环境 pip install 具体包
2021-07-15 21:23:16 1464
原创 实现高效的深盲原始图像恢复
诸如去噪、去模糊和超分辨率等多重低视觉任务通常从RGB图像开始,进一步减少退化现象,从而提高图像质量。然而,由于在图像信号处理(ISP)过程中的转换,在sRGB域中建模这些退化现象变得复杂。尽管这是一个已知问题,但文献中很少有方法直接处理传感器RAW图像。在本文中,我们直接在RAW域中处理图像恢复问题。我们设计了一个新的真实退化管道,用于训练深度盲RAW恢复模型。我们的管道考虑了真实的传感器噪声、运动模糊、相机抖动和其他常见的退化现象。
2024-10-23 16:03:07 919
原创 FastDVDNet README
GitHub - z-bingo/FastDVDNet: An unoffical implement of FastDVDNet by PyTorch解说 : https://zhuanlan.zhihu.com/p/73286010之前的深度视频去噪算法: DVDnet模型文件在这里发布!TODO 列表:这个repo是一个非官方版本的FastDVDNet:Towards Real-Time Video Denoising Without Explicit Motion Estimation,这个repo
2024-10-11 15:37:11 698
原创 使用带有受限移动区域的无人机进行包装递送Package Delivery Using Drones with Restricted Movement Areas
摘要1 Introduction2 Preliminaries算法
2023-06-07 10:54:28 404
原创 TensoRF-张量辐射场论文笔记
TensoRF-张量辐射场论文笔记_什度学习的博客-CSDN博客注释代码: https://github.com/xunull/read-TensoRF官方源码:https://github.com/apchenstu/TensoRF配置清华园pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple pip install -i https://pypi.tuna.tsinghua.edu.cn/simpl
2023-05-18 17:09:50 915
原创 html基础
img 回车 各种标签都可以(eg:p/li/body)table>tr*2>td*3 2行3列表格。dl>dt{我是图片}+dd{我是文字}shift+alt+下键。ul>li{于文文}*3。alt+z rem转化。
2023-03-31 21:34:24 101
原创 Enhanced Deep Residual Networks for Single Image Super-Resolution
其次,现有的SR算法将不同尺度因子的超分辨率视为独立问题,而没有考虑和利用不同尺度之间的相互关系,这些算法需要许多特定尺度的网络,这些网络需要独立训练来处理不同尺度。通过对预处理模块采用较大的内核,我们可以保持特定规模的部分较浅,而在网络的早期阶段则覆盖了较大的接受域。我们不仅利用了每个尺度的学习特征之间的相互关系,而且还提出了一种新的多尺度模型,可以有效地重建不同尺度的高分辨率图像。在图2中,我们比较了来自原始ResNet[9]、SRResNet[14]和我们提出的网络的每个网络模型的构建块。...
2022-08-09 16:28:57 2655
原创 NeRF数据集
Thisdirectorycontainsadatasetofsyntheticallyrenderedimagesthatwereusedin"NeRFRepresentingScenesasNeuralRadianceFieldsforViewSynthesis".Stats+8Scenes+100Trainingimages+100Validationimages+200Testimages+Imagesare800x800StructureSCENE_NAME-
2022-07-20 15:26:20 1248
原创 ShaRF: Shape-conditioned Radiance Fields from a Single View
ShaRF: Shape-conditioned Radiance Fields from a Single ViewAbstract 我们提出了一种方法来估计神经场景表示的对象只给定一个单一的图像。我们的方法的核心是估计物体的几何支架,并将其作为重建底层辐射场的指导。我们的公式是基于生成过程,首先将潜在代码映射到体素化形状voxelized shape,然后将其渲染为图像,对象的外观由第二个潜在代码控制。在推理过程中,我们优化了潜在代码和网络,以拟合一个新对象的测试图像。形状和外观的显式分离允许我们的模型
2022-07-13 13:23:43 439
原创 GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis
Abstract虽然二维生成对抗网络能够实现高分辨率的图像合成,但它们在很大程度上缺乏对三维世界和图像形成过程的理解。因此,它们不能提供对相机视点或物体姿态的精确控制。为了解决这个问题,最近的几种方法利用基于中间体素的表示与可微渲染相结合。然而,现有的方法要么产生较低的图像分辨率,要么在分离相机和场景属性方面出现不足,例如,物体的身份可能随视点而变化。在本文中,我们提出了一个辐射场的生成模型,该模型最近被证明是成功地用于单个场景的新视图合成。与基于体素的表示相比,辐射场并不局限于三维空间的粗糙离散化,但允许
2022-07-02 20:58:48 2139 3
原创 Editing Conditional Radiance Fields
神经辐射场(NeRF)是一种支持高质量视图合成的场景模型,对每个场景进行优化。在本文中,我们探索了允许用户编辑一个类别级的NeRF category-level NeRF-也被称为条件辐射场-训练在一个形状类别上。具体地说,我们介绍了一种将粗糙的二维用户涂鸦传播到三维空间的方法,以修改局部区域的颜色或形状。首先,我们提出了一个条件辐射场,它包含了新的模块化网络组件,包括一个跨对象实例共享的形状分支。观察同一类别的多个实例,我们的模型在没有任何监督的情况下学习底层的部分语义,从而允许将粗糙的2D用户涂鸦传播到
2022-06-29 14:49:22 773
原创 DeepRapper 代码详解
DeepRapperreadme1. Data Preparation2. Training & Generationtraingenerate3. Pretrained Model一、bash train.shtrain.shtrain.pydef main论文解说:DeepRapper 论文readmeDeepRapper: Neural Rap Generation with Rhyme and Rhythm Modeling, by Lanqing Xue, Kaitao Song,
2022-06-07 14:37:14 1234
原创 杭电2022数模B题隐私保护动态规划
题目(1)实际中,很多信息都可以简化为只有两个不同的选项,例如性别、近14天是否出省、有无家族遗传病史、是否绿码等,研究附件中的两组二元数据,保证每个个体的信息都能得到保护,分别给出一个隐藏数据量最少的方案,并建立二元数据表隐私保护的一般数学模型。(2)考虑多元数据表,研究附件中的两组多元数据,给出一个隐藏数据量最少的方案,并建立多元数据隐私保护的一般数学模型。(3)如果个体能够隐藏在一个至少包含p个个体的数据组中,则称该个体得到了p-重保护(p>=2),下图是一个分别有2-重保护和4-重保护的
2022-05-30 18:23:35 1200 1
原创 python安装包、pytorch3d
Read timed out.pip --default-timeout=100 install -U Pillow安装速度慢,清华园pip install torch===1.7.1 -i https://pypi.tuna.tsinghua.edu.cn/simplepip3 install imblearn -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn pymys
2022-05-28 16:32:47 554
原创 ESRGAN: Enhanced 增强的Super-Resolution Generative Adversarial Networks
Abstract.Super-Resolution Generative Adversarial Network (SR-GAN)是一项开创性的工作,能够在单幅超分辨率图像中生成真实的纹理。然而,幻觉中的细节往往伴随着令人不快的伪影unpleasant artifacts。为了进一步提高视觉质量,我们深入研究了SRGAN的三个关键组成部分——网络结构,对抗性损失adversarial loss和感知损失perceptual loss,并对它们进行了改进,得到了增强型EnhancedSRGAN(E...
2022-05-24 17:10:47 3597
原创 In-Place Scene Labelling and Understanding with Implicit Scene Representation
用nerf做语义分割Abstract语义标记Semantic labelling与几何形状geometry 和辐射重建radiance reconstruction高度相关,因为具有相似形状和外观的场景实体更有可能来自相似的类别。最近的隐式神经重建技术很有吸引力,因为它们不需要预先的训练数据,但同样的完全自监督的方法是不可能进行语义的,因为标签是人类定义的属性。我们扩展了神经辐射场(NeRF),以联合编码具有外观和几何形状的语义jointly encode semantics with a...
2022-05-20 16:30:57 1045
原创 FastNeRF: High-Fidelity Neural Rendering at 200FPS翻译
论文标题:FastNeRF: High-Fidelity Neural Rendering at 200FPS (ICCV 2021)建议预备知识:NeRF (BV1c34y1B7Hx)论文链接:https://arxiv.org/abs/2103.10380Abstract最近对神经辐射场(NeRF)的研究表明,神经网络如何被用来编码复杂的3D环境,可以从新的视角光现实地photorealistically呈现rendered。渲染这些图像对计算量的要求非常高,而且最近的改进.
2022-05-19 16:14:30 1630
原创 来自慕课 人工智能实践:Tensorflow笔记 的代码
人工智能实践:Tensorflow笔记课件源码下载链接:https://pan.baidu.com/s/19XC28Hz_TwnSQeuVifg1UQ提取码:mocm本文将包含课上老师演示过的所有代码目录第一讲 神经网络计算学习率指数衰减学习率鸢尾花数据集分类数据集读取总程序第二讲np.mgrid[]损失函数均方误差损失函数MSE自定义损失函数交叉熵损失函数softmax与交叉熵结合缓解过拟合第一讲 神经网络计算学习率import tensorflow as tfw = tf.Variab
2022-05-18 21:29:12 807
原创 Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
论文标题:Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields (CVPR 2022)建议预备知识:NeRF (BV1c34y1B7Hx) Mip-NeRF (BV1QL4y1L7C7) NeRF++ (BV1dS4y1P72T) 论文链接:https://arxiv.org/abs/2111.12077Abstract虽然神经辐射场(NeRF)在物体和小的有界空间区域上表现出令人印象深刻的视图合成结果,但是它们在“无界”场景
2022-05-18 11:06:06 5134 1
原创 NERF++: ANALYZING AND IMPROVING NEURAL RADIANCE FIELDS分析和改进神经辐射场
目录NERF++: ANALYZING AND IMPROVING NEURAL RADIANCE FIELDS分析和改进神经辐射场ABSTRACT1 INTRODUCTION2 PRELIMINARIES3 SHAPE-RADIANCE AMBIGUITY形状-辐射模糊度4 INVERTED SPHERE PARAMETRIZATION反向球体参数化NERF++: ANALYZING AND IMPROVING NEURAL RADIANCE FIELDS分析和改进神经辐射
2022-05-16 15:40:45 2434
原创 NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections不受约束的照片集
目录NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections不受约束的照片集Abstract1.Introduction3. Background4. NeRF in the Wild4.1. Latent Appearance Modeling4.2. Transient Objects4.3. Optimization5. ExperimentsBaselines:
2022-05-14 16:52:38 3196
原创 MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo多视角立体图像的快速广义辐射场重建
目录摘要介绍Multi-view stereo.View synthesis.Neural rendering.3. MVSNeRF3.1. Costvolumeconstruction.Extracting image features.Warping feature maps.Cost volume3.2. Radiance field reconstruction.Neural encoding volume.Regressing volume ..
2022-05-13 15:43:33 4188 2
原创 Block-NeRF: Scalable Large Scene Neural View Synthesis 可扩展的大场景神经视图合成
目录Block-NeRF: Scalable Large Scene Neural View Synthesis 可扩展的大场景神经视图合成 Abstract 1. Introduction 2. Related Work 2.1. Large Scale 3D Reconstruction 2.2. Novel View Synthesis 基于几何图形的图像重投影。Geometry-based Image Reprojection. Volumetric Scene Re
2022-05-11 18:45:01 5809
原创 Point-NeRF: Point-based Neural Radiance Fields论文翻译笔记
Point-NeRF: Point-based Neural Radiance FieldsAbstract像NeRF[35]这样的体积神经渲染方法可以生成高质量的视图合成结果,但对每个场景进行优化,导致过高的重建时间。另一方面,深度多视图立体视觉方法deep multi-view stereo methods可以通过直接网络推理快速重建场景几何形状。Point-NeRF结合了这两种方法的优点,利用神经三维点云和相关的神经特征来建模辐射场。通过聚合场景表面附近的神经点特征,可以有效地渲染点网络.
2022-05-10 17:06:23 2509
原创 IBRNet: Learning Multi-View Image-Based Rendering学习基于多视图图像的渲染
目录IBRNet: Learning Multi-View Image-Based Rendering学习基于多视图图像的渲染Abstract1.Introduction2.Related workImage based renderingVolumetric RepresentationsNeural scene representations3.Method3.1.视图选择和特征提取3.2 RGB-σ prediction using IBRNet3.2.
2022-05-09 17:06:49 3698
原创 pixelNeRF代码流程
目录pixelNeRF: ReadMEEnvironment setupGetting the dataRunning the model (video generation)ShapeNet Multiple Categories (NMR)ShapeNet Single-Category (SRN)DTUReal Car ImagesOverview of flagsQuantitative evaluation instructions定量评估说明train.pyconfigdatasetnetcla
2022-05-07 14:34:21 3587 8
原创 pixelNeRF: Neural Radiance Fields from One or Few Images 翻译笔记
目录Abstract1. Introduction2.相关工作对比3.NeRF限制4.Image-conditioned NeRF4.1Single-Image pixelNeRF4.2Incorporating Multiple Views 合并多个视图5.ExperimentsImplementation Details5.1. ShapeNet Benchmarks5.1.1 Category-specifific View Synthesis Benc
2022-05-06 17:24:49 2706
原创 mip-NeRF代码debug
代码:https://github.com/google/mipnerf翻译解说:https://blog.csdn.net/qq_43620967/article/details/124458976mip-NeRF-READNME该存储库包含以下内容的代码版本 Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. 这个实现是用JAX写的,是Google的JaxNeRF实现的一个分支。如果您遇到任
2022-05-05 20:00:37 3708
原创 NeRF-pytorch-readme
NeRF-pytorchNeRF(神经辐射场)是一种实现最先进的结果来合成复杂场景的新观点的方法。以下是由这个存储库生成的一些视频(下面提供了预先训练过的模型):这个项目是NeRF的忠实PyTorch实现,在运行1.3倍的速度复制结果。该代码基于作者的tenserflow实现here,并已测试了数值匹配。Installationgit clone https://github.com/yenchenlin/nerf-pytorch.gitcd nerf-pytorch...
2022-04-28 10:49:53 786
原创 NeRF论文翻译笔记
分享 | NeRF神经辐射场理解_深兰深延AI的博客-CSDN博客_神经辐射场NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis将场景表示为视图合成的神经辐射场摘要我们提出了一种方法,通过使用稀疏的输入视图集来优化底层的连续体积场景函数,来实现合成复杂场景的新视图的最新结果。我们的算法使用一个全连接(非卷积)深度网络表示一个场景,该网络的输入是一个连续的5D坐标(空间位置(x, y, z)和观看方向(θ
2022-04-28 10:28:09 2440 1
原创 python 远程连服务器
Instant Neural Graphics Primitives with a Multiresolution Hash Encoding基于多分辨率哈希编码的即时神经图形基元论文地址:https://nvlabs.github.io/instant-ngp/assets/mueller2022instant.pdf项目地址:https://github.com/NVlabs/instant-ngp项目主页:https://nvlabs.github.io/instant-ngp/...
2022-04-27 21:53:46 2082
原创 Mip-NeRF翻译
目录摘要1. Introduction3、Method3.1、Cone Tracing 锥形跟踪and Positional Encoding3.2、Architecture5.结论Mip-NeRF论文阅读笔记_Xuanqing_C的博客-CSDN博客Mip-NeR: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields摘要神经辐射场(NeRF)使用的渲染程.
2022-04-27 20:44:03 5264 1
原创 Instant Neural Graphics Primitives with a Multiresolution Hash Encoding 翻译
Instant Neural Graphics Primitives with a Multiresolution Hash Encoding基于多分辨率哈希编码的即时神经图形基元论文地址:https://nvlabs.github.io/instant-ngp/assets/mueller2022instant.pdf项目地址:https://github.com/NVlabs/instant-ngp项目主页:https://nvlabs.github.io/instant-ngp/I
2022-04-25 17:17:05 6203 3
原创 NeRF-SR: High-Quality Neural Radiance Fields using Super-Sampling论文翻译
使用超采样的高质量神经辐射场Abstract我们提出了NeRF-SR,一种高分辨率(HR)新视图合成的解决方案,主要采用低分辨率(LR)输入。我们的方法是建立在神经辐射场(NeRF)[33]的基础上的,该[33]通过多层感知器预测每一个点的密度和颜色。在生成任意尺度的图像时,NeRF正在努力处理超出观测图像的分辨率。我们的关键见解是,NeRF有一个局部先验,这意味着一个三维点的预测可以在附近的区域传播,并保持准确。我们首先利用一种超采样策略,在每个图像像素上拍摄多条光线,从而在亚像素水平上施加多视图
2022-04-14 22:07:51 2865 3
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人