《Video-Depth-Anything》项目安装与配置指南
1. 项目基础介绍
《Video-Depth-Anything》是一个用于超长视频深度估计的开源项目。该项目基于《Depth Anything V2》模型,能够处理任意长度的视频,同时保证质量、一致性和泛化能力。相比其他扩散模型,它具有更快的推理速度、更少的参数和更高的深度准确性。
主要编程语言:Python
2. 项目使用的关键技术和框架
- 关键技术:视频深度估计、扩散模型、Transformer
- 框架:使用了PyTorch作为深度学习框架,以及一系列Python库和工具,如NumPy、OpenCV等。
3. 项目安装和配置的准备工作与详细步骤
准备工作
- 确保您的系统中已安装Python(建议版本3.6以上)。
- 安装Git以便克隆项目仓库。
- 准备一个虚拟环境(推荐使用conda或virtualenv)。
安装步骤
-
克隆项目仓库:
git clone https://github.com/DepthAnything/Video-Depth-Anything.git cd Video-Depth-Anything
-
安装项目所需的依赖库:
pip install -r requirements.txt
-
下载预训练模型权重文件,并存放到项目中的
checkpoints
目录下。可以从项目的README文件中找到权重文件的下载链接。 -
运行以下命令以将权重文件放置到正确的位置:
bash get_weights.sh
-
运行示例视频深度估计(以下命令中的参数可以根据需要进行调整):
python3 run.py --input_video ./assets/example_videos/davis_rollercoaster.mp4 --output_dir ./outputs --encoder vitl
参数说明:
--input_video
:输入视频的路径。--output_dir
:输出结果保存的路径。--input_size
(可选):模型推理时使用的输入大小,默认为518。--max_res
(可选):模型推理时使用的最大分辨率,默认为1280。--encoder
(可选):用于指定使用的模型大小,vits
对应小模型,vitl
对应大模型。--max_len
(可选):输入视频的最大长度,-1
表示无限制。--target_fps
(可选):输入视频的目标帧率,-1
表示原始帧率。--fp32
(可选):使用fp32精度进行推理,默认使用fp16。--grayscale
(可选):保存灰度深度图,不应用颜色映射。--save_npz
(可选):以npz格式保存深度图。--save_exr
(可选):以exr格式保存深度图。
完成以上步骤后,您就可以开始使用《Video-Depth-Anything》项目进行视频深度估计了。