《Video-Depth-Anything》项目安装与配置指南

《Video-Depth-Anything》项目安装与配置指南

Video-Depth-Anything Video Depth Anything: Consistent Depth Estimation for Super-Long Videos Video-Depth-Anything 项目地址: https://gitcode.com/gh_mirrors/vi/Video-Depth-Anything

1. 项目基础介绍

《Video-Depth-Anything》是一个用于超长视频深度估计的开源项目。该项目基于《Depth Anything V2》模型,能够处理任意长度的视频,同时保证质量、一致性和泛化能力。相比其他扩散模型,它具有更快的推理速度、更少的参数和更高的深度准确性。

主要编程语言:Python

2. 项目使用的关键技术和框架

  • 关键技术:视频深度估计、扩散模型、Transformer
  • 框架:使用了PyTorch作为深度学习框架,以及一系列Python库和工具,如NumPy、OpenCV等。

3. 项目安装和配置的准备工作与详细步骤

准备工作

  • 确保您的系统中已安装Python(建议版本3.6以上)。
  • 安装Git以便克隆项目仓库。
  • 准备一个虚拟环境(推荐使用conda或virtualenv)。

安装步骤

  1. 克隆项目仓库:

    git clone https://github.com/DepthAnything/Video-Depth-Anything.git
    cd Video-Depth-Anything
    
  2. 安装项目所需的依赖库:

    pip install -r requirements.txt
    
  3. 下载预训练模型权重文件,并存放到项目中的checkpoints目录下。可以从项目的README文件中找到权重文件的下载链接。

  4. 运行以下命令以将权重文件放置到正确的位置:

    bash get_weights.sh
    
  5. 运行示例视频深度估计(以下命令中的参数可以根据需要进行调整):

    python3 run.py --input_video ./assets/example_videos/davis_rollercoaster.mp4 --output_dir ./outputs --encoder vitl
    

    参数说明:

    • --input_video:输入视频的路径。
    • --output_dir:输出结果保存的路径。
    • --input_size(可选):模型推理时使用的输入大小,默认为518。
    • --max_res(可选):模型推理时使用的最大分辨率,默认为1280。
    • --encoder(可选):用于指定使用的模型大小,vits对应小模型,vitl对应大模型。
    • --max_len(可选):输入视频的最大长度,-1表示无限制。
    • --target_fps(可选):输入视频的目标帧率,-1表示原始帧率。
    • --fp32(可选):使用fp32精度进行推理,默认使用fp16。
    • --grayscale(可选):保存灰度深度图,不应用颜色映射。
    • --save_npz(可选):以npz格式保存深度图。
    • --save_exr(可选):以exr格式保存深度图。

完成以上步骤后,您就可以开始使用《Video-Depth-Anything》项目进行视频深度估计了。

Video-Depth-Anything Video Depth Anything: Consistent Depth Estimation for Super-Long Videos Video-Depth-Anything 项目地址: https://gitcode.com/gh_mirrors/vi/Video-Depth-Anything

<think>好的,用户问的是Depth Anything v2有没有像鱼香ROS那样的一键安装。我需要先回忆一下鱼香ROS的一键安装是怎么回事。鱼香ROS提供的脚本应该是自动处理依赖、配置环境、下载必要文件等步骤,简化了安装过程。而Depth Anything v2是一个深度估计模型,通常这类项目需要安装Python依赖、PyTorch、下载预训练模型等步骤。 首先,用户之前已经询问过如何在Ubuntu安装Depth Anything v2,并且现在是在跟进问题。用户可能已经按照之前的步骤操作,但遇到了困难或者想要更简便的方法。用户提到鱼香ROS的一键安装,说明他们喜欢自动化脚本带来的便利,所以想知道是否有类似的解决方案。 我需要确认Depth Anything官方是否提供了一键安装脚本。根据之前的回答,官方并没有提供,所以需要说明这一点。然后考虑是否有社区或第三方提供的脚本,但可能没有,因此需要建议用户自行编写脚本。 接下来,用户的需求可能不仅仅是安装,还可能包括自动化整个流程,包括虚拟环境、依赖安装、模型下载等。所以需要提供一个示例脚本,并解释每个步骤的作用,同时提醒用户注意安全性,比如检查脚本来源。 另外,用户的环境是Ubuntu with ROS2 Humble,需要确保脚本ROS2环境不冲突,比如使用虚拟环境隔离。还要考虑使用清华源加速下载,这也是用户之前的需求点。 可能用户还担心手动安装的复杂性,特别是模型下载和依赖冲突的问题,所以需要强调虚拟环境的重要性,以及如何验证安装是否成功。最后,提醒用户如果没有一键脚本,自行创建脚本的方法,并给出示例,这样用户可以根据需要调整。</think>目前**Depth Anything v2没有官方或社区维护的一键安装脚本**(类似鱼香ROS的`wget http://fishros.com/install -O fishros && . fishros`),但可以通过**自定义脚本**实现类似效果。以下是实现方案: --- ### **一、为什么没有官方一键安装?** 1. **技术差异**:Depth Anything是视觉模型框架,依赖复杂(PyTorch、特定版本库),而ROS是系统级中间件,依赖更标准化 2. **环境隔离需求**:为避免ROS2的Python环境冲突,通常需要手动创建虚拟环境 3. **模型文件限制**:预训练模型文件较大(约1-2GB),直接集成到脚本存在分发问题 --- ### **二、实现自定义一键安装脚本** 创建`install_depth_anything.sh`文件,内容如下: ```bash #!/bin/bash # 步骤1:安装系统依赖 sudo apt update && sudo apt install -y git python3-pip python3-venv libgl1-mesa-glx # 步骤2:创建虚拟环境 python3 -m venv ~/depth_venv source ~/depth_venv/bin/activate # 步骤3:加速安装PyTorch+依赖 pip install torch torchvision torchaudio --index-url https://pypi.tuna.tsinghua.edu.cn/simple git clone https://ghproxy.com/https://github.com/depth-anything/depth-anything.git cd depth-anything git checkout v2 # 步骤4:安装项目依赖 pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple # 步骤5:下载模型(使用ghproxy镜像) mkdir -p checkpoints wget https://ghproxy.com/https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitl14.pth -O checkpoints/depth_anything_vitl14.pth echo "安装完成!激活环境命令: source ~/depth_venv/bin/activate" ``` --- ### **三、使用方法** ```bash # 赋予执行权限 chmod +x install_depth_anything.sh # 运行脚本(建议在干净环境中执行) ./install_depth_anything.sh ``` --- ### **四、鱼香ROS一键安装的对比** | 特性 | 鱼香ROS | 本Depth Anything脚本 | |---------------------|-----------------------|---------------------------| | 依赖管理 | 系统级包 | Python虚拟环境 | | 安装内容 | ROS核心+工具链 | 深度学习框架+预训练模型 | | 镜像源 | 自动选择国内源 | 强制使用清华源 | | 环境隔离 | 修改系统环境 | 完全隔离的venv | | 典型耗时 | 5-10分钟 | 8-15分钟(依赖模型下载) | --- ### **五、注意事项** 1. **安全警告**:运行第三方脚本前建议检查内容,可逐段复制执行 2. **模型验证**:下载后建议检查文件哈希值: ```bash sha256sum checkpoints/depth_anything_vitl14.pth # 官方哈希值需查看项目文档 ``` 3. **GPU加速**:如需CUDA支持,修改脚本中PyTorch安装命令为: ```bash pip install torch==2.0.1+cu118 torchvision==0.15.2+cu118 --extra-index-url https://pypi.tuna.tsinghua.edu.cn/simple ``` --- 这种自定义脚本方案结合了清华镜像源和ghproxy加速,能在ROS2 Humble环境中实现高效部署,同时保持ROS2原有Python环境的隔离。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诸盼忱Gazelle

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值