awesome-ai-system-prompts:打造高效Agent系统提示的艺术

awesome-ai-system-prompts:打造高效Agent系统提示的艺术

awesome-ai-system-prompts 🧠 Curated collection of system prompts for top AI tools. Perfect for AI agent builders and prompt engineers. Incuding: ChatGPT, Claude, Perplexity, Manus, Claude-Code, Loveable, v0, Grok, same new, windsurf, notion, and MetaAI. awesome-ai-system-prompts 项目地址: https://gitcode.com/gh_mirrors/awe/awesome-ai-system-prompts

在人工智能技术飞速发展的今天,Agent系统已经成为了一种能够自主执行任务、与工具互动并追求复杂目标的智能体。这些系统不仅承诺改变我们与技术互动的方式,还承诺增强人类的能力。而在这些高效Agent系统的核心,就是其系统提示(system prompt)。

项目介绍

awesome-ai-system-prompts项目旨在探索和总结构建高效Agent系统提示的模式和最佳实践。通过分析来自不同Agent系统的真实案例,该项目揭示了成功系统提示背后的核心原则,帮助开发者在2025年及以后构建出强大、可预测且值得信赖的AI助手。

项目技术分析

项目的技术分析深入研究了Agent系统提示的构成要素,包括角色定义、指令结构、工具集成和使用指南等。通过对Vercel's v0、same.new、Manus、OpenAI ChatGPT等案例的详细分析,项目总结了一套可供遵循的模式和实践。

项目技术应用场景

awesome-ai-system-prompts项目的应用场景广泛,涵盖了从界面生成、代码辅助到信息采集、文章编写等多个领域。以下是一些具体的应用场景:

  1. 界面生成与组件工具:Vercel v0通过明确定义的角色和功能,协助开发者快速生成用户界面。
  2. 编程辅助:same.new作为Agent编程助手,提供了严格的工具使用规则,提高了编码效率和质量。
  3. 通用目的Agent:Manus能够执行信息采集、数据处理和文章编写等任务,适用于多种场景。
  4. 集成工具与策略:OpenAI ChatGPT结合了多种工具和策略,成为一个多功能的对话系统。

项目特点

1. 明确的角色定义和范围

明确的角色定义是构建高效Agent系统提示的基础。这包括定义Agent的身份、核心功能和操作领域,以锚定其行为,设定用户期望,并防止超出范围或不合理的响应。

  • Vercel v0:立即声明其身份和专长。
  • same.new:定义角色、能力水平以及独家运行环境。
  • Manus:介绍自身并列举擅长的任务类别。
  • ChatGPT:清楚地陈述名称、创建者、底层架构和关键上下文信息。
  • Claude:建立一个超越简单工具的个性化角色。

2. 结构化的指令和组织

为了使复杂的提示易于管理,清晰的结构至关重要。使用标题、列表、代码块或自定义标签可以帮助人类维护者和AI模型解析和优先处理不同的规则集或信息。

  • v0 & ChatGPT:广泛使用Markdown标题。
  • same.new:使用自定义XML-like标签封装规则集。
  • Manus:使用描述性标签组织功能和规则。
  • ChatGPT:使用Markdown标题和代码块定义工具模式和政策。

3. 明确的工具集成和使用指南

Agent行为的关键在于对工具的理解:它们是什么,它们做什么,如何调用它们,它们的格式要求,以及何时以及何时不应使用它们。

  • ChatGPT:提供了函数模式(TypeScript定义)和详细的政策。
  • same.new:在调用工具之前,详细说明了为什么要调用工具。
  • Manus:在外部定义工具,并提供了使用规则。

通过这些特点,awesome-ai-system-prompts项目为开发者提供了一套构建高效Agent系统提示的蓝图。这不仅有助于提高Agent的可靠性和安全性,还能够确保它们在追求用户目标时的高效性。

总结来说,awesome-ai-system-prompts项目是探索和优化Agent系统提示的宝贵资源。通过对实际案例的深入分析,该项目提供了一套实用的模式和最佳实践,旨在帮助开发者在未来的技术发展中创建出更加智能、高效和可靠的AI助手。

awesome-ai-system-prompts 🧠 Curated collection of system prompts for top AI tools. Perfect for AI agent builders and prompt engineers. Incuding: ChatGPT, Claude, Perplexity, Manus, Claude-Code, Loveable, v0, Grok, same new, windsurf, notion, and MetaAI. awesome-ai-system-prompts 项目地址: https://gitcode.com/gh_mirrors/awe/awesome-ai-system-prompts

数据集介绍:多物种动物目标检测数据集 一、基础信息 数据集名称:多物种动物目标检测数据集 图片数量: - 训练集:7,767张 - 验证集:2,219张 - 测试集:1,110张 总计:11,096张覆盖多场景的动物图片 分类类别: 涵盖75个动物类别,包括: - 大型哺乳动物(熊、大象、长颈鹿、犀牛) - 珍稀物种(熊猫、红熊猫、树袋熊、海豹) - 水生生物(鲨鱼、海龟、水母、螃蟹) - 飞禽与昆虫(鹰、鹦鹉、蝴蝶、瓢虫) - 常见家畜(牛、马、猪、山羊) 标注格式: YOLO格式,含归一化边界框坐标及类别编号,可直接适配YOLOv5/v7/v8等主流框架。 二、适用场景 野生动物监测系统开发: 支持无人机航拍或野外摄像头数据中的动物识别,用于生物多样性研究和偷猎预警。 农业智能化管理: 检测农场牲畜(牛、羊、鸡)的健康状态与行为模式,优化养殖管理效率。 自然教育应用: 集成至AR自然观察工具,实时识别动物种类并提供生态知识讲解。 生物研究数据库建设: 为动物行为学、物种分布研究提供结构化视觉数据支撑。 安防边界预警: 识别特定危险动物(鳄鱼、毒蛇、蝎子),用于营地安全监控系统。 三、数据集优势 物种覆盖全面性: 包含陆地、水生、飞行等生态位的75类动物,涵盖从微型昆虫(瓢虫)到巨型生物(鲸鱼)的尺度跨度。 场景多样性: 整合航拍、地面拍摄、近距离特写等多视角数据,增强模型环境适应能力。 标注专业度: 严格校验的YOLO标注数据,边界框精准匹配动物形态特征,支持复杂遮挡场景检测。 跨领域适用性: 同时满足生态保护、农业管理、教育娱乐等多领域需求,提供从动物检测到细粒度分类的扩展能力。 模型兼容性: 标准YOLO格式支持快速迁移学习,可基于现有权重进行物种定制化模型开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诸盼忱Gazelle

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值