实操干货!MCP全解析,一步步教你借助第三方MCP Server开发Agent

随着最近Manus带动Agent应用的火热,MCP(模型上下文协议)成为很多社区热议的话题。今天为带大家带来深度的MCP解析与实操应用指南,相信看完这篇你应该可以立刻上手MCP。

本文目录:

  • MCP概念与架构全解析

  • 动手做一个MCP的Demo

  • MCP Server + LlamaIndex/LangGraph:快速构建Agent

  • 推荐资源

01

MCP概念与架构全解析

让我们从一个实际的开发样例开始。

【为什么出现MCP】

假如你开发了一个AI应用,无论是ChatBot还是复杂的Agent,都不会再局限于简单的LLM对话,很多时候你需要与外部世界连接,以访问数据源或使用工具。比如:

  • 操控浏览器实现自动化;访问本地文件

  • 访问数据库结构,以更好的让AI做编程

  • 调用CRM的API以驱动智能客服流程

那么,你需要连接不同的对象,使用不同的接口协议;你需要熟悉SQL、HTTP调用、Playwright等接口;可能你还需要使用搜索引擎、访问云存储、调用第三方开放API...这都需要做大量的“粘合”工作:

图片

MCP就是用来帮助简化LLM应用与这些外部资源间的集成。它允许LLM应用使用统一的协议来连接到这些外部资源,而不必逐个适配:

图片

MCP的做法是增加了一个中间层:LLM应用通过统一的MCP协议连接中间层(称为MCP Server),而这个中间层会处理与外部资源的对接

那为什么Agent火热以后大家才注意到MCP呢?很简单,因为Agent是最需要对接外部资源/工具的LLM应用。

【MCP有哪些好处】

其实在软件系统中这是一种常见设计范式(比如一些大模型API网关把不同厂家的大模型协议转化成统一的OpenAI兼容协议,以方便应用接入)。它的具体意义体现在:

  • LLM应用的简化:不用适配各种私有协议,你只需要知道怎么连接MCP server

  • LLM应用的快速扩展:随时“插拔”新的MCP Server即可,一个不够就再来一个

图片

    MCP的提出者Anthropic旗下的Claude Desktop就可以通过这种方式扩充能力。

  • 快速的适应变化:想象下,如果一个外部资源的接口发生变化,只需要访问它的MCP Server做修改,所有的LLM应用就可无缝适应。

  • 新的AI能力共享生态:通过MCP Server的共享,新的LLM应用可以快速获得各种工具,形成了一种新的合作体系,提高整体效用。

【基于MCP的集成架构】

基于MCP将你的LLM应用与外部资源集成的架构用下图表示:

图片

相对于LLM应用直连外部资源,这里主要多了一个中间层(MCP Server),以及连接这个中间层的(MCP Client),理解了这两个,你就理解了MCP。

MCP Server

 这里的Server不是传统意义上集中式的Server,你可以理解成一个服务插件。

  • MCP Server部署在哪里?

MCP Server可以部署在LLM应用本机,也可以远程部署(Remote),不过目前Remote方式还未完善,暂时不考虑。以下仅考虑本地模式。

    • MCP Server有哪些“服务”?

      • Tools:提供给LLM应用特别是Agent使用的工具。

      • Resoures:提供给LLM应用一些额外的结构化数据。

      • Prompts:提供给LLM应用的一些Prompt模板。比如你的应用是一个Chatbot,可以从MCP Server中取出这些模板,让使用者选择使用。

    • MCP Server从哪里获取?

      • 自己使用MCP SDK创建后供自己或企业内共享使用。

      • 从他人创建的MCP Servers中“挑选”,然后下载使用。比如从这里:

    图片

    本地模式下MCP Server与客户端应用间通过stdio/stdout(标准输入输出)的进程间通信进行消息交换。这种方式你肯定见过,比如:

    cat file.txt | grep "error" | sort > result.txt

    • MCP Server如何启动?

      • 本地模式下,在LLM应用中配置启动命令后,会自动启动MCP Server

      • 不同的MCP Server可能有不同的启动命令,注意查看MCP Server说明书

      • 有的MCP Server需要先安装依赖;有的通过npx/uvx运行的MCP server,则会自动下载缓存并临时运行。

      • MCP Server启动后的物理形式是一个独立的进程。

    • MCP Server怎么与Client应用通信?

    • MCP Server使用什么语言创建?

      目前支持TS/Python/Java SDK来编写MCP Server。

    MCP Client

    • MCP Client是由客户端LLM应用使用Client SDK创建并维护的一个Server会话,就像你在程序中维护一个数据库的Connection一样。一般长这样:

    async with stdio_client(server_params) as (read, write):
            async with ClientSession(
                read, write, sampling_callback=None
            ) as session:......
    
    • 借助Client SDK你可以与MCP Server通信。比如查看Server的Tools:

    tools = await session.list_tools()
    • 本地模式下,Client与Server是一对一的关系。如果需要连接多个MCP Server,需要自行维护多个Session

    02

    动手做一个MCP

    我们用一个简单的Client+Server的完整Demo来加强理解。

    使用pip install mcp安装SDK后,开始下列步骤。

    【创建MCP Server】

    这个MCP Server只有一个能力:提供一个计算器工具。实现如下:

    #server_demo.py
    from mcp.server.fastmcp import FastMCP
    
    # 创建一个MCP服务器
    mcp = FastMCP("演示")
    
    # 添加一个加法工具
    @mcp.tool()
    def calculate(expression: str) -> float:
        """计算四则运算表达式
        参数:
            expression: 数学表达式字符串,如 "1 + 2 * 3"
        返回:
            计算结果
        """
        ...省略计算器代码...
    
    if __name__ == "__main__":
        mcp.run(transport='stdio')

    注意这里必须要有启动代码,但现在你无需启动它。

    【创建MCP Client】

    现在创建一个客户端应用,来连接上面的MCP Server,并调用其中的计算器:

    #client_demo.pyfrom mcp.client.stdio import stdio_client
    from mcp import ClientSession, StdioServerParameters, types
    import asyncio
    
    #Client会使用这里的配置来启动本地MCP Server
    server_params = StdioServerParameters(
        command="python", 
        args=["./server_demo.py"], 
        env=None
    )
    
    async def main():       
        async with stdio_client(server_params) as (read, write):
            async with ClientSession(
                read, write, sampling_callback=None
            ) as session:
                
                await session.initialize()
    
                print('\n正在调用工具...')
                result = await session.call_tool("calculate",{ "expression": "188*23-34" })
                print(result.content)
    
    asyncio.run(main())

    现在直接运行这个客户端,就可以看到如下输出:

    图片

    我们在客户端加一行等待代码,让程序暂时挂起,来观察下面两个命令的结果:

    图片

    发现了什么?MCP Server这里被自动启动了,而且它是客户端应用的子进程!

    【如何调试MCP Server】

    这里还有个问题,如果我只是纯粹的MCP Server开发者,如何快速测试这个Server?对于这里的Python编写的server,可以使用MCP inspector来调试,运行命令:

    mcp dev server_demo.py

    现在访问http://localhost:5173,就进入可视化的调试界面,可以在这里直观的测试刚才的计算器工具:

    图片

    03

    第三方MCP Server + LlamaIndex/LangGraph:快速构建Agent

    相对上面的例子,你可能更关心的是能否借助第三方MCP Server,来让自己的Agent快速使用工具,以连接外部资源?

    现在一起来完成一个真正的Agent,这个Agent会使用第三方MCP Server中的工具来扩展自身能力,为了方便,这里借助LlamaIndex的FunctionCallingAgent来快速实现这个Agent(LangGraph请使用create_react_agent)。

    【找到MCP Server并安装】

    我们先来挑选一个MCP Server。比如这一个:

    图片

    这是一个用来访问ArXiv上论文的MCP Server,提供了搜索、下载等工具。根据它的说明,先安装(注意不同MCP Server安装命令不一样):

    uv tool install arxiv-mcp-server

    【创建Agent,使用这个MCP Server】

    现在我们创建Agent以连接并使用这个MCP Server。在MCP Server的说明中找到其使用的配置方法(其实就是运行命令与命令行参数),添加到Agent代码中:

    ...
    server_params_axiv = StdioServerParameters(
        command="uv", # Executable
        args= [
                "tool",
                "run",
                "arxiv-mcp-server",
                "--storage-path", "./storage"
            ],
        env={**os.environ}
    )

    接下来借助LlamaIndex中的McpToolSpec直接把MCP server中的Tools转化为Agent用的Tools(langGraph请使用langchain-mcp-adapters),然后创建Agent即可:

    async def main():
        # 连接MCP Server 
        async with stdio_client(server_params_axiv) as (read, write):
            async with ClientSession(read, write, sampling_callback=None) as session:
                await session.initialize()
            
                # 查看下MCP server的工具
                print('\n正在列出服务器工具...')
                tools1 = await session.list_tools()
                for tool in tools1.tools:
                    print('可用工具:', tool.name)
                    
                # 获得MCP server的tools
                mcpToolSpec = McpToolSpec(session)
                tools_list = await mcpToolSpec.to_tool_list_async()
    
                #一个简单的FunctionCallingAgent
                agent = FunctionCallingAgent.from_tools(
                    tools_list,
                    llm=llm,
                    verbose=True,
                    system_prompt="你是一个问题回答专家。请使用工具回答问题。")
    
                #测试
                while True:
                    question = input("\n请输入问题(输入q退出):")
                    if question.lower() == 'q':
                        break
                    response = await agent.achat(question)
                    print(response)
    
    asyncio.run(main())

    【测试】

    这样就借助一个已有的MCP Server来让我们的Agent获得了Arxiv访问的能力,比如你可以让Agent帮下载一个论文:

    图片

    04

    推荐资源

    • 官方文档

    https://modelcontextprotocol.io/introduction

    • MCP Server精选

      • https://github.com/punkpeye/awesome-mcp-servers

      • https://glama.ai/mcp/servers(web目录)

    • 把stdio-based的MCP server转化为SSE远程Server

    https://github.com/supercorp-ai/supergateway

    • LangChain的mcp适配器

    https://github.com/langchain-ai/langchain-mcp-adapters

    我们将在后续演示一个连接多MCP Server的更复杂的Agent应用,为大家介绍如何同时管理多个MCP Server会话,并使用其中的Tools。欢迎继续关注。

     

     如何学习AI大模型?

    我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

    我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

    第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

    第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

    第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

    第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

    第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

    第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

    第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


    👉学会后的收获:👈
    • 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

    • 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

    • 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

    • 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


    1.AI大模型学习路线图
    2.100套AI大模型商业化落地方案
    3.100集大模型视频教程
    4.200本大模型PDF书籍
    5.LLM面试题合集
    6.AI产品经理资源合集

    👉获取方式:
    😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

    <think>好的,用户想了解Spring AIMCP例。首先,我需要确认MCP在这里具体指什么。在Spring生态中,MCP可能有不同的含义,比如Model-Controller-Presenter,或者是某个特定项目的缩写。不过结合Spring AI来看,可能是指某种与AI模型相关的组件或模式。 接下来,我需要回忆Spring AI的相关内容。Spring AI是一个旨在简化在Spring应用中集成人工智能功能的项目。它可能提供与各种AI模型(如OpenAI、Hugging Face等)交互的抽象层,类似于Spring Data对数据库的抽象。 用户提到的“MCP例”可能是指某个具体的设计模式或架构组件。例如,Model-Controller-Presenter(MCP)模式,这可能是一种变体的MVC模式,但需要验证是否存在这样的命名。或者,MCP可能指代某个特定的模块或项目名称,比如Model Conversion Pipeline(模型转换管道)或其他缩写。 需要进一步查阅Spring AI的文档或相关资料,确认MCP的具体含义。假设暂时无法访问外部资料,我需要基于已有知识进行推断。可能的推测是,MCP可能是指“Model-Controller-Presenter”模式在Spring AI中的应用,或者是指管理AI模型配置和交互的某个组件。 在回答时,应分步骤解释:首先介绍Spring AI的整体概念,然后逐步引入可能的MCP例解释,包括其作用、结构和使用场景。同时,提醒用户如果MCP指代特定内容,可能需要更具体的上下文来准确回答。 需要确保回答结构清晰,符合用户要求的中文回答,并且正确使用LaTeX格式标注数学表达式(虽然当前问题不涉及数学,但需注意其他部分)。同时,避免使用Markdown,保持自然的口语化表达。</think>关于Spring AI中的MCP例,我们需要分步骤理解: 1. **Spring AI基础概念** Spring AI是Spring生态系统中的新兴项目,旨在为AI模型集成提供标准化接口。其核心思想类似于Spring Data对数据库的抽象,开发者可以通过统一API访问不同AI服务(如OpenAI、Hugging Face等)。 2. **MCP的可能含义分析** - **假设1:Model-Controller-Presenter架构** 在传统Spring MVC模式基础上,可能扩展出针对AI业务场景的三层架构: $$ \text{AI模型层(Model)} \rightarrow \text{逻辑控制层(Controller)} \rightarrow \text{表现适配层(Presenter)} $$ 这种模式适用于需要将原始AI输出转化为业务友好格式的场景 - **假设2:Model Conversion Pipeline** 可能指AI模型转换流水线,例如: ```text 输入预处理 → 模型推理 → 输出后处理 ``` 通过$PipelineBuilder$类现处理链配置 3. **典型应用场景** - 对话系统现: ```java @AiController public class ChatController { @PostMapping("/chat") public String handlePrompt(@RequestParam String input) { return aiClient.generate(input); } } ``` - 向量数据库集成:使用$VectorStoreTemplate$进行语义搜索 4. **配置要点** - 通过`application.yml`配置模型参数: ```yaml spring.ai.openai.api-key: ${API_KEY} spring.ai.openai.temperature: 0.7 ``` - 使用$@EnableAiClients$注解激活AI功能 建议在开发中结合具体业务需求: 1. 定义清晰的AI服务边界 2. 使用重试机制处理$f(x) = \text{API调用不稳定问题}$ 3. 通过Adapter模式现多模型热切换 如果需要更精确的"MCP例"解释,建议提供上下文或查看官方文档中的具体模块定义。
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值