THUDM/GLM-4-Voice 使用教程
GLM-4-Voice GLM-4-Voice | 端到端中英语音对话模型 项目地址: https://gitcode.com/gh_mirrors/gl/GLM-4-Voice
1. 项目介绍
GLM-4-Voice 是由智谱 AI 推出的一款端到端的语音对话模型。该模型能够理解和生成中英文语音,实现实时语音对话,并且可以根据用户指令调整语音的情感、语调、语速和方言等属性。GLM-4-Voice 由三个主要部分组成:GLM-4-Voice-Tokenizer、GLM-4-Voice-Decoder 和 GLM-4-Voice-9B。这些组件共同工作,提供高质量的语音对话体验。
2. 项目快速启动
首先,克隆项目仓库并安装依赖:
git clone --recurse-submodules https://github.com/THUDM/GLM-4-Voice.git
cd GLM-4-Voice
pip install -r requirements.txt
启动模型服务:
python model_server.py --host localhost --model-path THUDM/glm-4-voice-9b --port 10000 --dtype bfloat16 --device cuda:0
如果需要使用 Int4 精度启动,请运行:
python model_server.py --host localhost --model-path THUDM/glm-4-voice-9b --port 10000 --dtype int4 --device cuda:0
启动 web 服务:
python web_demo.py --tokenizer-path THUDM/glm-4-voice-tokenizer --model-path THUDM/glm-4-voice-9b --flow-path ./glm-4-voice-decoder
启动后,可以在浏览器中访问 http://127.0.0.1:8888
来使用 web demo。
3. 应用案例和最佳实践
以下是 GLM-4-Voice 的一些应用案例和最佳实践:
- 控制情绪:例如,用轻柔的声音引导用户放松。
- 改变语速:根据需要调整语速,如加快语速以模拟激动情绪。
- 生成方言:为用户提供方言语音,如东北话、重庆话等。
- 实时对话:模型支持实时语音对话,可以即时生成回复。
4. 典型生态项目
GLM-4-Voice 的生态项目包括但不限于:
- CosyVoice:GLM-4-Voice 使用的 Flow Matching 模型结构。
- Transformers:用于初始化和加载模型权重。
- GLM-4:GLM-4-Voice-9B 模型的基础。
以上是 GLM-4-Voice 的使用教程,希望对您有所帮助。
GLM-4-Voice GLM-4-Voice | 端到端中英语音对话模型 项目地址: https://gitcode.com/gh_mirrors/gl/GLM-4-Voice