Python并发编程教程
项目介绍
本项目旨在提供一个全面的Python并发编程学习资源,涵盖了线程、进程、异步编程等多种并发技术。通过本项目,开发者可以深入理解并发编程的原理,并掌握如何在实际项目中应用这些技术。
项目快速启动
安装依赖
首先,克隆项目到本地:
git clone https://github.com/volker48/python-concurrency.git
cd python-concurrency
然后,安装所需的依赖:
pip install -r requirements.txt
运行示例
以下是一个简单的线程示例代码:
import threading
def worker():
print(f'Worker thread: {threading.current_thread().name}')
threads = []
for i in range(5):
thread = threading.Thread(target=worker)
threads.append(thread)
thread.start()
for thread in threads:
thread.join()
保存上述代码为example.py
,然后运行:
python example.py
应用案例和最佳实践
案例一:多线程爬虫
使用多线程可以显著提高爬虫的效率。以下是一个简单的多线程爬虫示例:
import threading
import requests
def fetch(url):
response = requests.get(url)
print(f'Fetched {url}, status code: {response.status_code}')
urls = [
'https://www.example.com',
'https://www.example.org',
'https://www.example.net'
]
threads = []
for url in urls:
thread = threading.Thread(target=fetch, args=(url,))
threads.append(thread)
thread.start()
for thread in threads:
thread.join()
最佳实践
- 避免共享状态:尽量减少线程间的共享状态,使用线程安全的队列等数据结构。
- 合理设置线程数:过多的线程会导致资源竞争和上下文切换开销,应根据实际需求合理设置线程数。
典型生态项目
asyncio
asyncio
是Python标准库中的一个异步编程框架,适用于I/O密集型任务。以下是一个简单的asyncio
示例:
import asyncio
async def main():
print('Hello ...')
await asyncio.sleep(1)
print('... World!')
asyncio.run(main())
multiprocessing
multiprocessing
是Python标准库中的一个多进程编程框架,适用于CPU密集型任务。以下是一个简单的multiprocessing
示例:
import multiprocessing
def worker():
print(f'Worker process: {multiprocessing.current_process().name}')
processes = []
for i in range(5):
process = multiprocessing.Process(target=worker)
processes.append(process)
process.start()
for process in processes:
process.join()
通过本教程,您可以快速上手Python并发编程,并在实际项目中应用这些技术。希望本项目能对您的学习和开发有所帮助!