Wave-U-Net-Pytorch 项目教程
Wave-U-Net-Pytorch项目地址:https://gitcode.com/gh_mirrors/wa/Wave-U-Net-Pytorch
1. 项目的目录结构及介绍
Wave-U-Net-Pytorch 项目的目录结构如下:
Wave-U-Net-Pytorch/
├── LICENSE
├── README.md
├── hparams.py
├── hparams.yaml
├── waveunet.png
├── waveunet.py
└── ...
- LICENSE: 项目的许可证文件,采用 MIT 许可证。
- README.md: 项目的说明文档,包含项目的基本信息和使用指南。
- hparams.py: 包含超参数的 Python 文件。
- hparams.yaml: 包含超参数的 YAML 文件。
- waveunet.png: Wave-U-Net 的结构图。
- waveunet.py: 包含 Wave-U-Net 的 PyTorch 实现。
2. 项目的启动文件介绍
项目的启动文件是 waveunet.py
,该文件包含了 Wave-U-Net 的 PyTorch 实现。主要功能如下:
- 模型定义: 定义了 Wave-U-Net 的网络结构。
- 训练和测试: 提供了训练和测试模型的功能。
3. 项目的配置文件介绍
项目的配置文件是 hparams.yaml
,该文件包含了训练和测试模型所需的超参数。主要内容如下:
- 模型参数: 定义了模型的各种参数,如输入大小、层数等。
- 训练参数: 定义了训练过程中的参数,如学习率、批次大小等。
- 测试参数: 定义了测试过程中的参数,如评估指标等。
通过修改 hparams.yaml
文件,可以调整模型的配置以适应不同的训练和测试需求。
Wave-U-Net-Pytorch项目地址:https://gitcode.com/gh_mirrors/wa/Wave-U-Net-Pytorch