Backtesting.py 开源项目安装与使用指南

Backtesting.py 开源项目安装与使用指南

项目地址:https://gitcode.com/gh_mirrors/ba/backtesting.py

目录结构及介绍

Backtesting.py这个Python库中,其主要关注于提供一个强大的工具集用于回测交易策略。以下是该库的基本目录结构及其说明:

  • doc/: 文档相关文件存放位置。
    • codecov.yml: 测试覆盖率分析的配置文件。
    • .gitignore: 版本控制系统忽略的文件列表。
    • CHANGELOG.md: 变更历史记录文件。
    • CONTRIBUTING.md: 如何贡献代码至该项目的指导手册。
    • LICENSE.md: 授权许可协议文件。
    • MANIFEST.in: 包含用于构建时需要打包的文件列表。
    • README.md: 项目描述和简介。
    • pyproject.toml: 项目元数据和工具配置(如构建系统)。
    • requirements.txt: 安装此项目依赖的所有包的清单。
    • setup.cfg: 设置脚本配置选项。
    • setup.py: 配置安装选项的脚本。

核心子目录

backtesting/

这是核心功能所在的位置,它包含了以下关键子模块:

  • lib: 提供辅助函数、可复用组件以及策略类集合。
  • test: 存放测试数据以及对Backtesting.py进行单元测试的实用程序。
其他重要文件
  • __init__.py: 这是每个Python包内都存在的特殊文件,用来定义哪些内容可以被外部导入。
  • strategy.py: 策略实现的基础框架。
  • data.py: 负责处理数据获取和预处理的数据模块。
  • utils.py: 包括各种通用函数,有助于简化常见任务。

启动文件介绍

Backtesting.py的主目录下,实际的“启动”或运行过程通常涉及到创建并执行策略类实例的过程,而这些步骤并不局限在一个特定的“启动文件”,而是可以通过以下方式在任何Python脚本中完成:

from backtesting import Backtest, Strategy
from backtesting.lib import crossover
from backtesting.test import SMA, GOOG

class SimpleMovingAverage(Strategy):
    def init(self):
        price = self.data.Close
        self.ma10 = self.I(SMA, price, 10)
        self.ma50 = self.I(SMA, price, 50)

    def next(self):
        if crossover(self.ma10, self.ma50):
            self.buy()
        elif crossover(self.ma50, self.ma10):
            self.sell()

bt = Backtest(GOOG, SimpleMovingAverage, cash=10000, commission=.002)
stats = bt.run()
bt.plot()

上面的示例展示了如何从Backtesting.py的关键模块导入必要的组件来创建一个简单的SMA交叉策略,然后通过调用Backtest类的实例化对象run()方法来进行策略执行,最后可视化结果以评估性能。

配置文件介绍

虽然在Backtesting.py的目录结构中没有明确标出的“配置文件”,但可以通过修改setup.cfg, pyproject.toml, 和requirements.txt文件来间接控制环境配置和项目依赖关系。例如,在pyproject.toml文件中,可以指定项目所需的最低Python版本和其他依赖库;而在setup.cfg中,可以详细设置构建、打包和发布方面的具体参数。至于具体的回测参数,则是在你的策略定义中进行设定,如上述代码中的现金数量和佣金费率,通过在初始化Backtest对象时传递参数的方式进行配置。

由于Backtesting.py的设计理念偏向于灵活性,使用者可以根据自身需求轻松自定义策略和测试场景,故而多数配置项实际上嵌入到代码逻辑之中,而非单独的配置文件里。这样设计的好处在于,开发者可以直接看到所有相关的参数和条件,提高了透明度和调试的便利性。然而对于不熟悉Python编程的新手来说,这可能意味着学习曲线相对陡峭一些。总之,掌握如何通过代码本身来调整和优化Backtesting.py的行为,是利用该库高效开发量化交易策略的重要一环。

backtesting.py :mag_right: :chart_with_upwards_trend: :snake: :moneybag: Backtest trading strategies in Python. backtesting.py 项目地址: https://gitcode.com/gh_mirrors/ba/backtesting.py

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贺俭艾Kenyon

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值