Backtesting.py 开源项目安装与使用指南
项目地址:https://gitcode.com/gh_mirrors/ba/backtesting.py
目录结构及介绍
在Backtesting.py
这个Python库中,其主要关注于提供一个强大的工具集用于回测交易策略。以下是该库的基本目录结构及其说明:
doc/
: 文档相关文件存放位置。codecov.yml
: 测试覆盖率分析的配置文件。.gitignore
: 版本控制系统忽略的文件列表。CHANGELOG.md
: 变更历史记录文件。CONTRIBUTING.md
: 如何贡献代码至该项目的指导手册。LICENSE.md
: 授权许可协议文件。MANIFEST.in
: 包含用于构建时需要打包的文件列表。README.md
: 项目描述和简介。pyproject.toml
: 项目元数据和工具配置(如构建系统)。requirements.txt
: 安装此项目依赖的所有包的清单。setup.cfg
: 设置脚本配置选项。setup.py
: 配置安装选项的脚本。
核心子目录
backtesting/
这是核心功能所在的位置,它包含了以下关键子模块:
lib
: 提供辅助函数、可复用组件以及策略类集合。test
: 存放测试数据以及对Backtesting.py进行单元测试的实用程序。
其他重要文件
__init__.py
: 这是每个Python包内都存在的特殊文件,用来定义哪些内容可以被外部导入。strategy.py
: 策略实现的基础框架。data.py
: 负责处理数据获取和预处理的数据模块。utils.py
: 包括各种通用函数,有助于简化常见任务。
启动文件介绍
在Backtesting.py
的主目录下,实际的“启动”或运行过程通常涉及到创建并执行策略类实例的过程,而这些步骤并不局限在一个特定的“启动文件”,而是可以通过以下方式在任何Python脚本中完成:
from backtesting import Backtest, Strategy
from backtesting.lib import crossover
from backtesting.test import SMA, GOOG
class SimpleMovingAverage(Strategy):
def init(self):
price = self.data.Close
self.ma10 = self.I(SMA, price, 10)
self.ma50 = self.I(SMA, price, 50)
def next(self):
if crossover(self.ma10, self.ma50):
self.buy()
elif crossover(self.ma50, self.ma10):
self.sell()
bt = Backtest(GOOG, SimpleMovingAverage, cash=10000, commission=.002)
stats = bt.run()
bt.plot()
上面的示例展示了如何从Backtesting.py的关键模块导入必要的组件来创建一个简单的SMA交叉策略,然后通过调用Backtest
类的实例化对象run()
方法来进行策略执行,最后可视化结果以评估性能。
配置文件介绍
虽然在Backtesting.py的目录结构中没有明确标出的“配置文件”,但可以通过修改setup.cfg
, pyproject.toml
, 和requirements.txt
文件来间接控制环境配置和项目依赖关系。例如,在pyproject.toml
文件中,可以指定项目所需的最低Python版本和其他依赖库;而在setup.cfg
中,可以详细设置构建、打包和发布方面的具体参数。至于具体的回测参数,则是在你的策略定义中进行设定,如上述代码中的现金数量和佣金费率,通过在初始化Backtest
对象时传递参数的方式进行配置。
由于Backtesting.py的设计理念偏向于灵活性,使用者可以根据自身需求轻松自定义策略和测试场景,故而多数配置项实际上嵌入到代码逻辑之中,而非单独的配置文件里。这样设计的好处在于,开发者可以直接看到所有相关的参数和条件,提高了透明度和调试的便利性。然而对于不熟悉Python编程的新手来说,这可能意味着学习曲线相对陡峭一些。总之,掌握如何通过代码本身来调整和优化Backtesting.py的行为,是利用该库高效开发量化交易策略的重要一环。