自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(185)
  • 资源 (11)
  • 收藏
  • 关注

翻译 『深度學習與圍棋遊戲』筆記 2

教機器學習的內容佈局模型庫。由高手佈局棋譜中的高頻率走步構成。建立棋局狀態搜索樹。盡量減少備先的下一步棋。估算每步棋的價值。衡量機器人的棋力傳統的日本級段制。與機器人或者人類比賽測定。建造第一個機器人...

2019-04-16 10:34:33 495

翻译 『深度學習與圍棋遊戲』筆記 1

最近,搞到一本書 Deep Learning and the Game of Go 。歐美書商好像有種習慣,科技方面尤其編程相關的電子書,銷售一段時間後會公開放到網上,供人免費下載。這本書就來源於此。估計,有社會資本支持書商的善舉。希望國內資本雄厚的企業,向西方學習,鼓勵支持國內書商也這樣做。這本書分為3篇14章及5個附錄。第一篇:基礎第1章, 簡明扼要地介紹人工智能、機器學習、深度學習...

2019-04-11 06:22:56 627

原创 数据的预处理是深度学习的关键

传统量化投资的主要工具方法是统计分析。读过《量化投资:以Python为工具》,据说它是国内最受欢迎的这类书。当进入数学公式的堆砌、推导章节时,放弃了继续。最终的选择是 Deep Learning。深度学习、神经网络的最大优点是:处理数据的算法由“系统”自动进行,你无需制造计算方法。但是,你提供的数据必须适合“系统”的要求。从Github上找了些现成“系统”观摩学习。直觉的第一感,它们对...

2019-02-01 16:43:35 1258

原创 人工智能的根本定义

我认为,人工智能就是为了发现特定数据集合内含的知识,使用计算机进行大规模试错,并尽可能减少试错次数,找到比较好的结果。人工智能包含3要素:数据集合(大数据)是试错的对象;计算机硬件,是试错规模的保障;软件是尽量减少试错次数的保障。...

2019-02-01 14:47:36 2620 1

原创 Alpha Zero 趣味学习:训练网络

启动 TicTacToe ,会进入网络训练或人机对弈。如果不设置启动参数 –human_play=1,便自动进入网络训练。即:python main.py开始训练前,要在 main.py 中做两件事情。第一,初始化游戏和网络:if CFG.game == 0: game = TicTacToeGame()net = NeuralNetworkWrapper(game)...

2018-09-07 16:19:10 790

原创 Alpha Zero 趣味学习:设置网络参数

Alpha Zero 趣味学习:设置网络参数

2018-09-06 08:49:35 1061

原创 Alpha Zero 趣味学习:TicTacToe

Alpha Zero 趣味学习:TicTacToe深度学习风行天下的起始,是围棋软件 AlphaGo 的成功。从游戏软件开发中学习 deep learning,可以适当避开深度学习理论的繁难晦涩、枯燥乏味,值得一试。AlphaGo 有着名垂青史的赫赫功绩,但也有其难免的弱点。它的学习方法属于有监督学习,需要海量标注数据,不仅使得开发成本居高,并且学习者难有充足数据可用。AlphaG...

2018-09-05 00:45:32 623

翻译 贝叶斯推理:一个更有趣的例子

贝叶斯推理:一个更有趣的例子系统中的某用户每天收发的文本信息的数目,都有记录。图-1画出了这些数据。你想了解该用户收发信息的习惯在此期间的变化,是逐渐的还是突然的。你将如何解决问题?%matplotlib inlinefrom IPython.core.pylabtools import figsizeimport numpy as npfrom matplotlib impor...

2018-08-28 08:36:52 2471

翻译 贝叶斯推理:概率分布

贝叶斯推理:概率分布

2018-08-26 12:37:02 2216

翻译 贝叶斯推理:后验概率的更新

贝叶斯推理:后验概率的更新

2018-08-24 11:05:49 7192

翻译 贝叶斯推理:基本概念

贝叶斯定理的高级用法(1)最近在读这本书,《Bayesian Methods for Hackers : Probabilistic Programming and Bayesian Inference》,即《贝叶斯定理的高级用法:概率编程和贝叶斯推理》,作者是 Cameron Davidson-Pilon。概率统计是机器学习、深度学习等人工智能技术的基础理论之一;贝叶斯定理是概率统计实...

2018-08-23 10:41:01 1920 1

翻译 听它爹说他孩儿:Keras 学习笔记 6.1

本书第六章:文本和序列的深度学习本章内容包括:将文本数据转化成可用的表达方式运用循环神经网络运用一维卷积神经网络本章探索处理文本、时间等序列数据的深度学习模型。文本,可以理解为单词或字符的序列。深度学习有两个处理序列的基础算法,一是循环神经网络,二是一维卷积神经网络。一维卷积神经网络是二维卷积神经网络的变种。我们将在本章讨论这两种方法。 两个算法的应用如下:文档分类和时间序列数据分类,例如,认定文...

2018-05-25 06:33:27 943

翻译 听它爹说他孩儿:Keras 学习笔记 5.2

过度拟合与欠缺拟合克服过度拟合的过程叫做正则化。让我们仔细看看最普通的正则化技术,以及它们的实际应用:本笔记 4.3 电影评论分类的改进。减小网络尺寸防止过度拟合最简单的办法是减小网络尺寸,即减少模型可学习参数的数目。决定模型参数数目的,是层的数目和每层单元的数目。模型的参数越多,存储容量越大,表示训练样本及其目标影射关系的词典性能越好。例如,具有 500,000 二值参数的模型,可以轻松学会 M...

2018-05-25 03:12:20 579

翻译 听它爹说他孩儿:Keras 学习笔记 5.1

机器学习基础现在进入本书的第四章。本章内容包括:超越分类和回归的其他机器学习方式机器学习模型的正规评估程序深度学习数据的预处理特征工程过度拟合的处理处理机器学习问题的通用流程机器学习的四个分支监督学习。当前深度学习的应用几乎全是这一类型。非监督学习。其中,降维和聚类是很有名的。自监督学习。标签是启发算法根据输入的数据自动生成,不是人们提供。强化学习。例如围棋程序 AlpahGo。评估机器学习模型把...

2018-04-30 08:29:15 459

翻译 听它爹说他孩儿:Keras 学习笔记 4.5

预测房价:回归的范例机器学习问题的另一种类型是回归。回归预测的对象是连续值而非离散的标签。例如,用气象数据预测明天的气温;或者,根据详细计划书预测软件工程的完工日期。波士顿房屋价格数据集你将尝试预测房屋的中位价。数据点包括:1970 年代中期,在波士顿郊区,犯罪率,当地财产税率等。数据集只有 506 个数据点,并分成 404 个训练样本和 102 个测试样本。输入数据的特征,例如犯罪率,数值的变化...

2018-04-28 07:13:39 772

翻译 听它爹说他孩儿:Keras 学习笔记 4.4

新闻分类:多个类别的分类范例本节,你将搭建网络把路透社的新闻按主题区分成 46 个不同类,每个数据点只能归入一个类别,因此,这种问题叫做单标签、多类别的分类。如果每个数据点可以属于多个类别(即主题),你所面临的问题就成了多标签、多类别的分类。路透社数据集这个数据集是路透社1986年推出的、由短新闻及其分类主题构成的。它是个简单的、广泛用于文本分类的玩具级数据集。它有     46 个不同主题,每个...

2018-04-25 08:46:34 584

翻译 听它爹说他孩儿:Keras 学习笔记 4.3

对电影评论进行分类:二分法的范例把一批数据分成两类,可能是机器学习应用最为广泛的分类方法。因特网电影数据库( IMDB )的数据集该数据集有 50,000 条影评,训练与测试各用 25,000 条,而正面与负面评价各占 50 %。与数据集 MNIST 相伴,IMDB 数据集也被打包进 Keras。影评已经预处理,文字序列转换成为数字序列,每个数字表示字典中的一个单词。下面的代码首次运行,会把约 8...

2018-04-19 06:29:21 1227

翻译 听它爹说他孩儿:Keras 学习笔记 4.2

Keras 简介Keras 拥有以下重要功能:代码可在 CPU 和 GPU 上同样运行。用户喜欢的 API 可以快速构建深度学习原型。内建机制支持卷积网络(用于计算机视觉),循环网络(用于处理序列)和上述二者的任何组合。支持任意网络架构:多个输入或多个输出的模型,层共享,模型共享,等等。Keras 拥有超过 200,000 的用户,其中大公司有 Google, Netflix, Uber, CER...

2018-04-11 07:01:32 428

翻译 听它爹说他孩儿:Keras 学习笔记 4.1

神经网络入门这是《Deep Learning with Python》第 3 章的学习笔记。本章内容包括:神经网络的核心部件Keras 简介搭建深度学习工作站用神经网络解决基本分类和回归问题你已经知道,神经网络的训练涉及如下东西:组合到网络(或模型)中的层输入的数据及其对应的目标损失函数,反馈信号用于学习优化器,决定如何进行学习层:深度学习的建筑构件层是神经网络的基本数据结构。层是数据处理模块,层...

2018-04-10 15:58:51 465

翻译 听它爹说他孩儿:Keras 学习笔记 3.4

神经网络的驱动器(引擎):基于梯度的优化如前所见,我们首个神经网络的各层这样来转化数据:output = relu(dot(W, input) + b)在此, W 和 b 是张量,是层的属性。它们被叫做层的权重或者可训练的参数。权重 W 是核心属性,b 是偏置属性。权重包含的信息,用于网络训练数据的学习。起初,权重矩阵填充的是些微小的随机数,叫做随机初始化。当然,在 W 和 b 是随机数时,不能指...

2018-04-10 08:09:59 559

翻译 听它爹说他孩儿:Keras 学习笔记 3.3

神经网络的传动器:张量操作(运算)深度学习神经网络转化数据的功能,可以简化成对数字数据张量极少的几个操作。例如,张量的加法、乘法等。Keras 层的实例是这个样子:keras.layers.Dense(512, activation='relu')层可看成函数,它输入一个 2 维张量,输出另外一个 2 维张量。输出的张量是对输入张量的重新表示。这个函数如下所示:output = relu(dot(...

2018-04-02 07:12:23 563

翻译 听它爹说他孩儿:Keras 学习笔记 3.2

神经网络的数据表示在前面的范例中,Numpy 保存数据的多维数组,也叫做“张量”。当前机器学习系统都以张量为基本数据结构。张量是数据的容器,而数据几乎全是数字类型的,所以,张量是数字的容器。张量是任意维度矩阵的产物。注意,在张量的语境中,维度常称为“轴”(axis)。标量(零维度的张量)可以用 Numpy 标量的属性 ndim 显示它的轴数。张量的轴数又叫它的等级(rank)。例如:>&gt...

2018-03-29 05:59:20 592

翻译 听它爹说他孩儿:Keras 学习笔记 3.1

神经网络的数学构件这是《Deep Learning with Python》第2章的学习笔记。首先说明一下,本书的学习笔记,是对知识要点的摘译,不是逐字逐行的全译。任何一本技术书对于特定读者,都是有干货(有用的)也有水货(没用的)。希望尽量挤掉水分,把对我有用的记下来。本章内容是:神经网络的第一个范例张量与张量的操作神经网络通过反向传播与梯度下降进行学习本章讲述张量和梯度下降等新概念。一定要注意,...

2018-03-27 05:38:55 696

翻译 听它爹说他孩儿:Keras 学习笔记 2

本书有30多个范例,帮你学会解决具体问题。这些范例开发工具,用的是 Keras 及其底层 TensorFlow。你将学会使用 Keras 处理实际问题,如机器视觉、自然语言、图像分类、时间序列预测、情绪分析、图像和文本生成等。Keras 的老家在 https://keras.io 本书范例代码在 https://github.com/fchollet/deep-learning-with-pyth...

2018-03-25 09:24:49 685

原创 听它爹说他孩儿:Keras 学习笔记 1

《Deep Learning with Python》,叫这名儿的书有好几本。我正在读的这本作者是 François Chollet ,深度学习程序库 Keras 的老爹,也是 TensorFlow 的营造者。先大致看了第一章,这本书的写法很合我意,它用代码说事儿,不扯数学理论。作者说,他特意这样做,一是为了没有数学背景的读者,二是因为用代码和文字解说,也能说清深度学习。看来,作者是真正明白深度学...

2018-03-25 04:41:39 487

原创 《 Python 机器学习专题手册》笔记 3

数据预处理的几种方法import numpy as npfrom sklearn import preprocessingdata = np.array([[ 3, -1.5, 2, -5.4], [ 0, 4, -0.3, 2.1], [ 1, 3.3, -1.9, -4.3]])# 去除均值data_sta...

2018-03-19 07:44:10 463

原创 《 Python 机器学习专题手册》笔记 2

数据预处理的几种方法1. 标准化,也称去均值、按方差比例缩放import numpy as npfrom sklearn import preprocessingdata = np.array([[ 3, -1.5, 2, -5.4], [ 0, 4, -0.3, 2.1], [ 1, 3.3, -1.9, -4.3...

2018-03-18 08:30:09 433

原创 《 Python 机器学习专题手册》笔记 1

《 Python 机器学习专题手册》,原书名 Python Machine Learning Cookbook。它的作者 Prateek Joshi,出版商 PACKT  Puplishing。看过几本 Python 机器学习方面的书,感觉这本最好。它是为“编程人”写的。“编程人”包括程序员在内的经常写计算机程序的人。文字写作的人,把写作说是“码字”。类似地,编程可说是“码码”,只是听着有点儿贫。...

2018-03-17 03:28:00 644

原创 recipe 应该译成“专题”,cookbook 应该译成“专题手册”

在有关编程的英文书籍中,经常遇见单词 recipe 。一般的中文翻译把它直译成“菜谱、菜单”之类。我最近在读 《Python Machine Learning Cookbook》(作者 Prateek Joshi),书中多处出现 recipe 一词,例如,本书正文前的第一页,写着:Python Machine Learning Cookbook100 recipes that teach you ...

2018-03-16 07:35:40 2032 1

原创 TensorFlow 起步就掉进了坑

春节闲来无事心血来潮,动了学学 TensorFlow 的念头。踏进TF中文门户直奔tutorial。它说TF的入门功课是手写体识别mnist,相当于一般编程的‘Hello World’。它说要用文件input_data.py下载相关数据。试了几次连不上服务器,改用鼠标点击直接下载成功。它还说,要用input_data.py中的函数从下载的压缩文件提取数据,并把数据分为大小不同的训练用和测试验证用三...

2018-02-20 04:13:03 1064

原创 数学盲摆弄神经网络

1、 scikit-learn 是机器学习最佳入门工具想着用神经网络之类的办法,分析股票数据,增收减亏,降低交易风险。恰逢人工智能火热,跟着卷入了机器学习的潮涌。看过一些高论,说是要学机器学习,必须先学好高等数学:微积分、线性代数、数理统计和概率论等。没有受过这些数学的课堂教育,只有从网上找到一堆相关的电子书籍,试着自学。在走马观花、囫囵吞枣、时断时续地自学之后,终于对些许基本概念一知半解、似懂非...

2017-12-07 06:13:10 739

原创 回测框架pybacktest简介(二)

pybacktest 的疑点第(一)节“教程”原文,是用 ipython notebook 写成,程序代码是一些片段组成。为了阅读方便,合并在一起。import pybacktest import pandas as pdohlc = pybacktest.load_from_yahoo('SPY')ohlc.tail()short_ma = 50 long_ma

2016-06-28 10:44:16 5471 1

翻译 回测框架pybacktest简介(一)

pybacktest 教程本教程让你快速了解 pybacktest's 的功能。为此,我们回测精典交易策略移动平均线MA交叉。MA快线上穿慢线时,买进做多MA快线下穿慢线时,卖出做空进场规则,也是退场规则,交易策略相反相成软件包在此下载 https://github.com/ematvey/pybacktestimport pybacktest import p

2016-06-27 15:52:28 14811 2

原创 量化分析:把Tushare数据源,规整成PyalgoTrade所需格式

量化分析:把Tushare数据源,规整成PyalgoTrade所需格式对A股市场趋势进行分析,首先必须确定数据来源。如果只想做日k线、周k线的技术分析,可以用PyalgoTrade直接从yahoo、google等下载数据,用不着Tushare。但是,如果想做分钟k线的技术分别,或者想了解基本面和消息面的数据,就用得着Tushare了。PyalgoTrade使用的基本数据格式有两种,

2016-05-26 01:16:49 11658 2

翻译 量化投资策略:常见的几种Python回测框架(库)

量化投资策略:常见的几种Python回测框架(库) 在实盘交易之前,必须对量化交易策略进行回测。在此,我们评价一下常用的Python回测框架(库)。评价的尺度包括用途范围(回测、虚盘交易、实盘交易),易用程度(结构良好、文档完整)和扩展性(速度快、用法简单、与其他框架库的兼容)。 Zipline: 事件驱动的回测框架。Quantopian 正在使用它。Zip

2016-05-19 17:25:52 62130 3

翻译 Jupyter Notebook 的快捷键

Jupyter Notebook 的快捷键Jupyter Notebook 有两种键盘输入模式。编辑模式,允许你往单元中键入代码或文本;这时的单元框线是绿色的。命令模式,键盘输入运行程序命令;这时的单元框线是灰色。命令模式 (按键 Esc 开启)Enter : 转入编辑模式Shift-Enter : 运行本单元,选中下个单元Ctrl-Enter : 运行本单元Alt-Enter :

2016-04-01 10:54:37 230667 9

翻译 第一章 用神经网络识别手写数字(第一节 感知器)

第一章 用神经网络识别手写数字人类的视觉系统,是个世界奇迹。看看下面的手写数字:大多数人毫不费力地识别这些数字为504192。以为这很容易,其实是错觉。在人类大脑半球上,有个初级视觉皮层,V1区,含有1亿4000万个神经元。在这些神经元之间有数百亿个连接。然而,人的视觉不只是V1,而是多个视觉皮层 —— V2、V3、V4和V5,做更复杂的图像处理。我们的头脑好比一台超级计算机,和谐

2016-03-31 15:32:14 2920

翻译 《神经网络与深度学习》的教学方法

《神经网络与深度学习》的教学方法神经网络,是人们发明的最优美的编程范式之一。在通常编程模式下,人们告诉计算机做些什么,把一个大问题拆解成多个小问题,并精确定义任务,以方便计算机去执行。神经网络则与此相反,人们并不告诉计算机如何求解问题,而是由计算机通过观察数据进行学习,自行得出解决问题的办法。人们期待神经网络能从数据中自动学习,但在2006年之前,除了极少数的个例,人们并不知道如何训练

2016-03-30 19:36:24 1796

翻译 神经网络与深度学习

神经网络与深度学习

2016-03-30 15:27:00 2236

原创 在Python3.4下,用cx_freeze打包PyQt4程序

受到love小树林的启发,圆满完成了打包。操作过程如下:1、下载cx_freeze这里是下载的地址从该网页上找到cx_Freeze‑4.3.4‑cp34‑none‑win32.whl,点击下载2、修改下载文件的扩展名把扩展名whl,改为zip3、把该文件解压缩取出其中的3个子目录4、删除cx_freeze的旧包把Python 3.4 安装目录下,Lib\site

2015-03-06 05:55:19 5666

TA-Lib 编译好的 Python 封装 -Win7 (64位) Python 3.6 (64位)

TA-Lib 编译好的 Python 封装 -Win7 (64位) Python 3.6 (64位) 目前互联网上的唯一此类资源

2017-10-15

PyQt挖地雷游戏源码

程序中原有bug,我已将其铲除,可正常运行

2014-09-09

PyQt做的360 Demo

原作者和修改者的信息,在源文件main_widget.py里。 起初只能在Python2 上跑,稍做修改后可在Python3上跑了。 打包用的是cx_freeze,可能它是目前唯一Python3上的打包工具。 我是当学习PyQt教材用的。 谢谢原作者和修改者。

2014-08-26

Hacking Secret Ciphers with Python

密码学是比较高深的学问。 本书用浅显直观的话语,和大量范例, 详实介绍了用Python破解密码的技术。

2014-05-01

Making Games with Python and Pygame

用Python和Pygame创作游戏的好教材。 原版PDF,不是扫描的。

2014-04-30

Erlang UTF-8 转 Unicode 的字典程序

Erlang R14版,可生成utf-8,但在werl环境之外,无法生成Unicode。本模块解决了这个问题。

2011-08-06

Code::Blocks 使用手册(教程) .chm文件

codeblocks 是个 C++ 编程的 IDE。它相当完美,相当好用。 本书是目前唯一全面、完整、深入介绍codeblocks的教材。

2010-07-20

用Python处理人类自然语言

关于NLTK的权威书籍 Python处理人类自然语言的成熟工具是Natural Language Toolkit。本书介绍了它的实用技术。

2010-04-13

专家系统原理与编程(美国教科书,第3版)

美国教科书,第3版 2002年出版 详细介绍了Clips的用法,实用性强

2008-10-03

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除