VIBE项目安装与使用指南

VIBE项目安装与使用指南

VIBE Official implementation of CVPR2020 paper "VIBE: Video Inference for Human Body Pose and Shape Estimation" VIBE 项目地址: https://gitcode.com/gh_mirrors/vi/VIBE

一、项目目录结构及介绍

VIBE是一个用于人体姿态和形状估计的视频推断方法,其GitHub仓库地址为:https://github.com/mkocabas/VIBE。以下是该仓库的主要目录结构和每个部分的简要介绍:

VIBE/
├── configs             # 配置文件夹,存放各种实验配置yaml文件。
├── demo.py             # 演示脚本,用于在任意视频上运行VIBE。
├── doc                 # 文档资料,包括额外的说明和帮助文档。
├── eval.py             # 评估脚本,用于测试模型性能。
├── lib                 # 核心库,包含了模型实现、数据处理等关键代码。
│   └── utils           # 工具函数,如FBX输出转换等。
├── scripts             # 脚本集合,包括数据准备、环境设置等辅助脚本。
│   ├── install_pip.sh  # 使用pip安装依赖的脚本。
│   ├── install_conda.sh # 使用conda安装依赖的脚本。
│   ├── prepare_data.sh  # 准备训练和测试所需的数据。
│   ├── prepare_training_data.sh # 准备训练数据集的脚本。
├── test                # 测试代码或相关数据。
├── gitignore          # Git忽略文件配置。
├── LICENSE             # 许可证文件,详细规定了代码的使用权限。
└── README.md           # 主要的项目读我文件,介绍了项目概述和快速入门信息。

二、项目启动文件介绍

demo.py

  • 作用: 提供了一个快速运行VIBE模型的入口点,支持本地视频和YouTube视频作为输入。
  • 用法:
    • 对于本地视频: python demo.py --vid_file sample_video.mp4 --output_folder output/ --display
    • 对于YouTube视频: python demo.py --vid_file https://www.youtube.com/watch?v=wPZP8Bwxplo --output_folder output/ --display

train.py

  • 作用: 启动模型训练过程,基于提供的配置文件。
  • 配置使用:
    • 通过修改--cfg参数指定配置文件路径,如python train.py --cfg configs/config.yaml

三、项目的配置文件介绍

配置文件主要位于configs目录下,以.yaml格式存在。这些配置文件定义了模型训练和评估时的关键参数,例如网络结构详情、学习率、优化器选择、损失函数设定、数据预处理方式等。一个典型的配置文件例子是config.yaml,它通常会包含以下部分:

  • 模型参数: 包括模型架构的细节。
  • 训练设置: 数据集路径、批大小、迭代次数等。
  • 优化器设置: 使用哪种优化器以及相应的学习率策略。
  • 数据加载器: 如何加载训练和验证数据,包括数据增强选项。
  • 损失函数: 定义使用的损失类型及其权重分配。
  • 输出与日志: 指定结果保存路径及训练日志记录方式。

在开始任何训练之前,强烈推荐仔细阅读配置文件并根据实际需求进行适当调整。利用scripts目录中的脚本预先配置环境,并确保满足所有先决条件,包括但不限于Python版本、必要的库安装以及可能的数据下载和预处理步骤。

VIBE Official implementation of CVPR2020 paper "VIBE: Video Inference for Human Body Pose and Shape Estimation" VIBE 项目地址: https://gitcode.com/gh_mirrors/vi/VIBE

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

余桢钟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值