GraspNet Baseline 项目使用教程
1. 项目目录结构及介绍
graspnet-baseline/
├── dataset/
│ ├── generate_tolerance_label.py
│ └── ...
├── doc/
│ └── ...
├── knn/
│ ├── setup.py
│ └── ...
├── models/
│ └── ...
├── pointnet2/
│ ├── setup.py
│ └── ...
├── utils/
│ └── ...
├── .gitignore
├── LICENSE
├── README.md
├── command_demo.sh
├── command_test.sh
├── command_train.sh
├── demo.py
├── requirements.txt
├── test.py
└── train.py
目录结构介绍
- dataset/: 包含数据集相关文件,如生成容差标签的脚本
generate_tolerance_label.py
。 - doc/: 包含项目文档文件。
- knn/: 包含 KNN 算法的实现及相关配置文件
setup.py
。 - models/: 包含项目使用的模型文件。
- pointnet2/: 包含 PointNet++ 算法的实现及相关配置文件
setup.py
。 - utils/: 包含项目使用的工具函数。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目介绍文件。
- command_demo.sh: 运行演示程序的脚本。
- command_test.sh: 运行测试程序的脚本。
- command_train.sh: 运行训练程序的脚本。
- demo.py: 演示程序的主文件。
- requirements.txt: 项目依赖包列表。
- test.py: 测试程序的主文件。
- train.py: 训练程序的主文件。
2. 项目启动文件介绍
demo.py
demo.py
是项目的演示程序主文件,用于检测和可视化 RGB-D 图像中的抓取点。可以通过以下命令运行:
python demo.py --checkpoint_path <路径>
test.py
test.py
是项目的测试程序主文件,用于运行推理和结果评估。可以通过以下命令运行:
python test.py --dataset_root <路径> --camera <相机类型> --checkpoint_path <路径> --dump_dir <路径>
train.py
train.py
是项目的训练程序主文件,用于训练模型。可以通过以下命令运行:
python train.py --dataset_root <路径> --camera <相机类型> --log_dir <路径>
3. 项目配置文件介绍
requirements.txt
requirements.txt
文件列出了项目运行所需的依赖包,可以通过以下命令安装:
pip install -r requirements.txt
setup.py
setup.py
文件位于 pointnet2/
和 knn/
目录中,用于编译和安装 PointNet++ 和 KNN 算法的自定义操作符。可以通过以下命令安装:
cd pointnet2
python setup.py install
cd ../knn
python setup.py install
command_demo.sh
, command_test.sh
, command_train.sh
这些脚本文件包含了运行演示、测试和训练程序的示例命令,可以根据需要进行修改和执行。
通过以上介绍,您可以更好地理解和使用 GraspNet Baseline 项目。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考