- 博客(195)
- 资源 (1)
- 收藏
- 关注
原创 2-Halcon-- select_gray函数功能(用于根据区域(Region)的灰度值特性筛选区域)
select_gray 是 Halcon 中用于根据区域(Region)的灰度值特性(如均值、最小值、标准差等)筛选区域的算子。其与 select_shape 类似,但专注于灰度特征而非几何特征
2025-02-15 09:41:09
505
原创 1-Halcon--select_shape函数功能(用于筛选区域(Region))
Halcon 中用于筛选区域(Region)的关键算子,它基于区域的形状特征(如面积、长宽比、圆度等)对输入区域进行过滤。其参数灵活,使用广泛,但对于初学者可能较难掌握。
2025-02-15 09:07:25
688
原创 89-OpenCVSharp —-Cv2.CompareHist ()函数功能(用于比较两个图像直方图相似度)详解
compareHist 函数是 OpenCV 中用于比较两个图像直方图相似度的工具。它是图像匹配、目标识别、图像检索等领域中常用的方法之一。通过计算两个图像的直方图差异,compareHist 可以量化图像之间的相似度。
2025-01-31 12:20:45
1083
原创 88-OpenCVSharp —-Cv2.CalcHist ()函数功能(图像直方图计算工具)详解
calcHist 是 OpenCV 中一个非常常用的函数,用于计算图像的直方图。直方图可以反映图像中像素值的分布情况,是许多图像处理任务的基础,如图像匹配、图像分割和目标识别等。
2025-01-31 12:20:22
608
原创 87-OpenCVSharp —-Cv2.Ellipse2Poly ()函数功能(用于生成椭圆的多边形近似点)详解
ellipse2Poly 函数是 OpenCV 中用于生成椭圆的多边形近似点的函数。这个函数将椭圆(或弧形)的参数输入后,输出一组点,这些点构成了椭圆或弧的多边形逼近。它特别适用于图形绘制和图像处理任务中,需要用多边形逼近椭圆的情况。
2025-01-31 12:20:06
760
原创 86-OpenCVSharp —-Cv2.Ellipse ()函数功能(用于绘制椭圆)详解
ellipse 函数是 OpenCV 中用于绘制椭圆的函数,广泛应用于图像处理、计算机视觉任务中,尤其是在目标检测、特征提取和图像可视化方面。它使用给定的旋转矩形(RotatedRect)来定义椭圆的位置、大小和旋转角度。
2025-01-31 12:19:30
890
原创 85-OpenCVSharp —-Cv2.DrawMarker ()函数功能(用于在图像上绘制标记)详解
drawMarker 函数用于在图像上绘制标记(marker),常用于图像分析、调试以及在特定位置标记关键点。在计算机视觉中,标记可以帮助可视化定位信息,或者在特定的处理过程中标记出关键特征。
2025-01-27 10:52:30
709
原创 84-OpenCVSharp —-Cv2.ClipLine ()函数功能(用于裁剪图像中的直线段)详解
clipLine 函数用于裁剪图像中的直线段,使其与指定矩形区域相交。该函数在计算机视觉中非常有用,特别是在处理图像和几何图形时,可以确保在图像区域外的线段部分不会被绘制或计算。
2025-01-27 10:46:27
917
原创 83-OpenCVSharp —-Cv2.Circle ()函数功能(用于在图像上绘制圆形)详解
circle 函数用于在图像上绘制圆形,是 OpenCV 中非常常用的图形绘制函数。该函数可以用来标注圆形区域、目标或作为某些算法的可视化效果。
2025-01-27 10:43:15
1004
原创 82-OpenCVSharp —-Cv2.ArrowedLine ()函数功能(用于在图像上绘制带箭头的直线)详解
arrowedLine 是 OpenCV 中用于在图像上绘制带箭头的直线的函数。该函数在显示方向信息、标注路径或箭头标识时非常有用。
2025-01-27 10:40:13
953
原创 81-OpenCVSharp —-Cv2.DistanceTransform ()函数功能(计算图像中每个点到最近的零点(即背景)的距离变换)详解
distanceTransform 是 OpenCV 中用于计算图像中每个点到最近的零点(即背景)的距离变换算法。它广泛应用于形态学处理、物体检测、图像分割等任务。此函数的核心是将输入的二值图像转换为每个像素点到最近非零像素的距离图。
2025-01-27 10:33:37
934
原创 80-OpenCVSharp —-Cv2.BlendLinear ()函数功能(用于图像融合、过渡效果和一些多图层处理)详解
blendLinear 是 OpenCV 中用于线性图像混合的一个函数,通常用于图像融合、过渡效果和一些多图层处理的场景。该函数通过线性插值将两张图像按权重进行混合,产生一个平滑过渡的结果。
2025-01-27 10:28:57
1072
原创 79-OpenCVSharp —-Cv2.WarpPolar ()函数功能(用于图像变换的函数)详解
warpPolar 是一个用于图像变换的函数,通过将图像从笛卡尔坐标系(直角坐标系)转换为极坐标系(极坐标系是一种基于半径和角度来表示位置的坐标系统)。这种转换在很多图像处理任务中是有用的,比如圆形物体的检测、图像分析等。
2025-01-27 10:24:41
779
原创 78-OpenCVSharp —-Cv2.WarpPerspective ()函数功能(基于透视变换对图像进行几何变换)详解
warpPerspective 函数的核心原理是基于透视变换对图像进行几何变换。透视变换(Perspective Transform)可以改变图像的视角,使得图像中的物体仿佛从不同的角度观察。与仿射变换(affine transform)不同,透视变换会改变图像中的平行线,产生透视效果。
2025-01-27 10:16:19
597
原创 77-OpenCVSharp —-Cv2.warpAffine 函数功能(仿射变换对图像进行几何变换)详解
warpAffine 是 OpenCV 中用于图像仿射变换的函数,可以执行平移、旋转、缩放、倾斜等操作。通过仿射变换矩阵 M,该函数能够对图像进行灵活的几何变换,广泛应用于图像处理、计算机视觉、深度学习等领域。在实际应用中,选择适合的插值方法和边界模式对于处理效果至关重要。
2025-01-27 10:14:13
761
原创 76-OpenCVSharp —-Cv2.Resize()函数功能(用于图像尺寸变换)详解
`resize` 是 OpenCV 中用于图像尺寸变换的常用函数,其通过插值算法实现图像的缩放。根据应用场景的不同,选择合适的插值方法和缩放比例可以优化图像质量和处理效率。在实际应用中,结合其他算法如归一化、数据增强等,可以提高深度学习模型的训练效果。
2025-01-27 09:57:50
569
原创 75-OpenCVSharp —-Cv2.Remap()函数功能(通过映射操作将源图像的像素重新定位到目标图像的位置)详解
OpenCV 中的 remap 函数是一个强大的工具,广泛应用于图像的几何变换和畸变校正中。它通过映射表进行坐标变换,支持不同的插值方式和边界处理策略,可以满足各种复杂图像处理需求。结合其他图像处理算法,如图像拼接、视频稳定、图像增强等,remap 函数能够处理更为复杂的应用场景。然而,在使用时需要特别注意映射数据的正确性和边界处理,以避免出现图像失真和计算效率问题。
2025-01-27 09:52:55
678
原创 74-OpenCVSharp —-Cv2.LogPolar()函数功能(用于将图像从笛卡尔坐标系转换为对数极坐标系)详解
logPolar 作为一种强大的图像变换工具,在旋转、尺度不变性方面有显著的优势。结合合适的特征提取和匹配算法,它能够在多种计算机视觉任务中提供强有力的支持。虽然在一些特殊场景下可能需要与其他算法配合使用,但其在处理旋转和尺度变化中的表现无疑是独特且重要的。
2025-01-27 09:36:13
965
原创 73-OpenCVSharp —-Cv2.LinearPolar函数功能(用于将图像从笛卡尔坐标系转换到极坐标系)详解
linearPolar 函数是 OpenCV 中用于将图像从笛卡尔坐标系转换到极坐标系的一种方法。具体来说,它执行的是 线性极坐标变换,其将图像的每个像素根据其在笛卡尔坐标系中的位置映射到极坐标系。
2025-01-27 09:33:44
1048
原创 72-OpenCVSharp —-Cv2.InvertAffineTransform函数功能(计算给定仿射变换矩阵的逆变换矩阵)详解
invertAffineTransform 是一个非常有用的函数,它用于计算给定仿射变换矩阵的逆矩阵。在图像处理中,仿射变换广泛应用于图像旋转、缩放、平移和剪切等操作,而逆仿射变换则用于将变换后的图像恢复到原始坐标系。该函数在图像恢复、图像配准、多视角分析和目标跟踪等任务中具有重要应用。通过结合其他图像处理技术,如透视变换、局部特征匹配和几何变换,invertAffineTransform 可以帮助实现更复杂的任务。
2025-01-27 09:30:07
1151
原创 71-OpenCVSharp —-Cv2.getRectSubPix()函数功能(从输入图像中提取一个指定大小的矩形区域)详解
getRectSubPix 是一个功能强大的函数,能够高精度地从图像中提取子区域,并进行子像素级别的插值。它广泛应用于目标跟踪、图像配准、立体视觉、图像增强等多个领域。在实际使用时,需要根据具体应用选择合适的插值方法,同时优化性能以处理大规模图像数据。与其他图像处理算法(如目标跟踪、图像配准等)配合使用时,getRectSubPix 能显著提升图像处理的精度与效果。
2025-01-27 09:24:40
968
原创 70-OpenCVSharp —-Cv2.integral()函数功能(用于计算图像的积分图)详解
假设输入图像是一个二维数组 ( I(x, y) ),积分图(也称为内积图)是一个新的数组 ( S(x, y) ),其值是图像中从左上角 (0,0) 到位置 (x, y) 的所有像素值的累加和。算法是 OpenCV 中一个常见的图像处理工具,通常用于计算图像的积分图(Integral Image),它是高效计算某些图像操作(如卷积、模板匹配等)时的关键技术。在模板匹配中,计算每个滑动窗口区域的相似度时,使用积分图可以快速得到每个窗口区域的像素总和,这大大加快了模板匹配的速度,尤其是当模板较大时。
2024-12-07 20:16:05
840
原创 69-OpenCVSharp —-Cv2.matchGMS()函数功能(基于几何一致性和全局一致性的图像匹配优化算法)详解
`matchGMS()` 是 OpenCV 中用于计算图像匹配的一个重要函数,它基于全局一致性(Global Consistency)和几何一致性(Geometric Consistency)的思想,能够在匹配中去除错误匹配点,提高匹配精度,特别是在处理具有较大变形或遮挡的图像时。其核心思想是根据一组候选匹配点的几何约束,筛选出具有全局一致性的匹配结果。
2024-12-07 20:13:29
746
原创 68-OpenCVSharp —-Cv2.FloodFill()函数功能(用于填充图像中的区域)详解
OpenCVSharp 中的算法是一个强大且灵活的图像处理工具,适用于区域填充、图像分割、目标检测等多种应用。其核心思想基于颜色差异判断和递归或迭代的区域增长方式。通过合理设置阈值、种子点和颜色差异参数,可以有效控制填充的精度与范围。尽管其性能可能受到大图像或复杂区域的影响,但通过优化图像尺寸、调整填充区域等手段可以提高算法的效率。
2024-12-07 20:09:14
1093
原创 32-OpenCVSharp--特征提取之提取骨架详细使用方法
骨架化是一项重要的形态学图像处理技术,尤其在图像分析、形状识别、物体检测等领域有着广泛的应用。OpenCVSharp为开发者提供了基础的图像处理函数,通过结合形态学操作、边缘检测、轮廓提取等技术,骨架化可以帮助简化图像中的复杂形状,使后续处理更加高效。
2024-12-06 17:30:05
1177
原创 31-OpenCVSharp--特征描述之HOG描述符详细使用方法
HOG(Histogram of Oriented Gradients)是一种常用于物体检测(如行人检测)的特征描述符,它通过捕捉图像中局部区域的梯度方向分布来描述图像的形状特征。HOG特征广泛应用于计算机视觉任务,特别是在需要识别物体或检测对象轮廓的场景中,表现出色。在OpenCVSharp中,HOG描述符通常用于目标检测,尤其是在行人检测、车牌识别、面部检测等应用中。
2024-12-06 17:27:47
1175
原创 30-OpenCVSharp--特征提取之傅里叶描述子详细使用方法
傅里叶描述子是一种强大的形状描述方法,能够有效地进行形状匹配、形状识别,并且具备旋转、平移、缩放的不变性。利用傅里叶变换将图像的轮廓从时域转换为频域,使得形状的高频和低频信息分别揭示了图像的细节和全局特征。
2024-12-06 17:24:59
1071
原创 29-OpenCVSharp--区域特征之紧致度/圆度/偏心率详细使用方法
紧致度、圆度和偏心率是描述区域形状的几何特征,在图像处理、物体检测、形状识别等领域中具有重要作用。通过利用OpenCVSharp库中的相关函数,能够方便地计算这些特征,并在实际应用中进行形状分析、目标跟踪、区域过滤等操作。
2024-12-06 17:22:13
1178
原创 28-OpenCVSharp--图像ROI裁剪详细使用方法
函数是 OpenCVSharp 中非常实用的一个工具,它允许用户通过交互式的方式选择图像中的一个感兴趣区域,并对该区域进行裁剪或其他进一步的处理。的核心原理是允许用户在图像中选择一个矩形区域,该区域被视为图像的“感兴趣区域”(ROI)。:对于图像中含有噪声、复杂背景或需要特殊处理的区域,进行适当的预处理(如去噪、锐化)有助于用户准确选择ROI,减少后续操作的复杂度。可以通过适当的图像缩放来加速交互。通过该函数,用户可以交互式地选择感兴趣的区域,而无需预定义坐标,对于动态和不规则区域的选择特别有用。
2024-12-04 21:43:40
973
原创 27-OpenCVSharp--将多个图像按水平方向拼接在一起详细使用方法
算法是图像拼接中常见且简单的技术,用于将多个图像沿水平方向拼接成一个大的图像。因此,拼接结果的宽度为参与拼接的各图像宽度之和,而高度则是最高的图像高度。拼接结果的宽度是所有输入图像宽度之和。:所有参与拼接的图像必须具有相同的高度,或者手动调整图像的高度一致。:如果拼接图像的数量较多,可以使用多线程并行处理不同图像的拼接任务。在上述代码中,我们首先加载两张图像,然后通过调整它们的高度来确保拼接后图像的高度一致,最后使用。在此过程中,如果两幅图像的高度不同,通常会对较小的图像进行填充,使得两幅图像的高度一致。
2024-12-04 21:33:43
716
原创 25-OpenCVSharp--图像的裁剪详细使用方法
图像裁剪是图像处理中的常见操作,它允许从原始图像中提取出感兴趣区域(ROI, Region of Interest),这可以用于图像分析、特征提取、模板匹配等任务。:裁剪区域通常会作为后续特征提取(如 SIFT、SURF 等)的输入,裁剪操作帮助我们集中注意力于感兴趣的部分。:通常裁剪后的区域可以进一步进行平滑处理,如高斯模糊、均值滤波等,以减少噪声对后续处理的影响。这两个方法分别用于选择图像中的行和列的一个范围,它们是裁剪图像的基础方法。在 OpenCV 中,裁剪是通过指定图像的子矩阵来实现的。
2024-12-04 21:12:23
1250
原创 24-OpenCVSharp--图像的复制详细使用方法
图像复制算法主要依赖于图像的内存管理以及对图像内容的精确操作。复制操作有时被称为“浅复制”(shallow copy)或“深复制”(deep copy),根据是否仅复制图像指针(浅复制)或完整复制数据(深复制)来区分。
2024-12-04 21:07:03
774
原创 23-OpenCVSharp--图像的创建详细使用方法
在 OpenCVSharp 中,图像的创建是图像处理中的基础操作,通常需要生成新的图像对象或在现有图像上创建特定区域或图层。以下是一些与图像创建相关的核心算法的详细分析,包括核心原理、功能、参数、使用注意事项、性能优化以及与其他算法的搭配使用。例如,根据阈值处理结果创建二值图像,或者根据图像的某些属性(如亮度)来生成不同类型的图像。例如,在视频流处理或实时监控系统中,图像的创建和更新是一个动态过程。当处理不同数据类型的图像时,特别是灰度与彩色图像混合使用时,可能会遇到数据类型不匹配的问题。
2024-12-04 21:02:03
887
原创 22-OpenCVSharp--像素编辑详细使用方法
Canny 边缘检测是一种常用的边缘检测算法,它通过多阶段过程,包括噪声去除、梯度计算、非极大值抑制和边缘追踪等步骤来检测图像中的边缘。均值模糊是图像平滑的一种常见方法,使用均值滤波器对每个像素进行卷积,通常是通过图像周围一定大小的区域计算均值来完成。通过合理使用 OpenCVSharp 的函数和优化策略,可以提高像素编辑操作的效率,满足更高性能的需求。其中,( C ) 是原像素值,( \Delta ) 是加的常量(对于加亮为正值,减暗为负值)。边缘追踪:通过连接边缘像素,构成完整的边缘。
2024-12-04 20:56:59
1313
原创 21-OpenCVSharp--图像属性分析详细使用方法
OpenCV功能使用详解200篇 》《 OpenCV算子使用详解300篇 》《 Halcon算子使用详解300篇 》
2024-12-04 20:51:22
1146
原创 20-OpenCVSharp-- matplotlib详细使用方法
尽管 OpenCVSharp 和matplotlib的集成并不直接支持 C# 环境,借助 Python.NET 等技术,你可以在 C# 中使用 Python 的matplotlib绘制和显示图像。对于 OpenCVSharp 来说,推荐使用其自带的图像显示功能 (Cv2.ImShow) 进行图像展示,只有在特殊需求下(如图像绘制的自定义需求)才考虑引入 Python 中的matplotlib。
2024-12-04 20:47:11
587
原创 19-OpenCVSharp--图像的显示详细使用方法
下面我将详细分析 OpenCVSharp 中图像显示的相关算法、核心原理、函数参数、注意事项、优化方法、调用实例以及与其他算法搭配使用的情况。将图像数据转换为适合显示的格式,并调用操作系统提供的图形库(例如 Windows 的 GDI 或 macOS 的 Quartz)将图像呈现给用户。类型的图像数据呈现到屏幕上的图形窗口,并提供了与其他图像处理算法相结合的能力。通过以下几种方式,可以利用。:窗口的默认大小是自动调整的,基于图像的尺寸。:对于大型图像,如果仅仅是用于显示目的,可以考虑在显示之前将图像缩小。
2024-12-04 20:40:20
804
原创 18-OpenCVSharp--图像处理和保存详细使用方法
OpenCVSharp的函数是图像处理和保存的重要工具,通过它可以方便地将内存中的图像数据保存为各种格式的文件。合理选择图像格式、压缩质量、图像处理顺序等可以显著影响保存操作的效率和效果。在使用时需要注意图像数据有效性、格式兼容性和文件路径问题,以确保保存操作的顺利进行。
2024-12-04 20:32:05
1365
原创 17-OpenCVSharp--图像读取功能详细使用方法
图像读取是计算机视觉和图像处理任务的第一步,Cv2.ImRead用于加载图像文件并将其转化为OpenCV的Mat对象。后续的图像处理和分析任务可以根据具体的应用需求选择不同的算法和技术,如图像预处理(缩放、裁剪、颜色空间转换)、特征提取、目标检测、图像修复、图像拼接和深度学习等。OpenCV作为一个功能强大的计算机视觉库,提供了大量的工具和接口,支持从传统计算机视觉算法到现代深度学习算法的实现。通过灵活使用OpenCV的各种功能,我们可以高效地处理。
2024-12-04 20:29:17
1111
机器视觉软件Halcon21.05离线安装指南
2024-11-22
dnSpy .NET 调试器和汇编编辑器
2024-11-22
Opencv C++图像处理全面指南:从环境搭建到实战案例解析
2024-11-17
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人